

取扱説明書 Direct aiming Station

DS シリーズ

DS-103AC DS-105AC

21309 90035

本書の読み方

このたびは弊社製品をお買い上げいただき、ありがとうございます。

- この取扱説明書は、実際に機械を操作しながらお読みください。常に適切な取り扱いと、 正しい操作でご使用くださいますようお願いいたします。
- ホストコンピューターなどと接続することにより、コマンド操作で測定したり、プログラムモードのデータを出力したりすることができます。制御コマンドや通信フォーマットの詳細を記した「コミュニケーションマニュアル」については、最寄りの営業担当にお問い合わせください。
- 扱いやすく、より良い製品をお届けするため、常に研究・開発を行っております。製品の 外観および仕様は、改良のため、予告なく変更されることがありますので、あらかじめご 了承ください。
- 本書の内容は予告なく変更することがありますので、あらかじめご了承ください。
- 掲載のイラストは、説明を分かりやすくするために、実際とは多少異なる表現がされている場合があります。あらかじめご了承ください。
- 弊社は、本書に関し、日本国内における譲渡不能の非独占利用の権利をお客様に許諾し、お客様もご同意いただくものとします。
- 本書の全部または一部の無断複写複製を禁じます。(著作権法上の例外を除きます)
- お客様に本書の改変、改良、翻訳等の二次的著作物の作成および利用することについては 許諾いたしません。

▶ 記号について

本書では、説明の中で次のような記号を使っています。

4	: 使用上の注意事項や、作業前に読んでいただきたい重要事項を示しま
	す。
F	: 関連する章(項)や参照していただきたい章(項)を示します。
備考	: 補足事項を示します。
解	: 用語や測定方法の解説を示します。
<測定>など	: 画面のタイトルを示します。
【測定】など	: 画面に表示されているソフトキーやウィンドウダイアログボックスのボ タンなどを示します。
(ESC)など	: 操作パネルのキーを示します。
「設定」など	: 各画面に表示されている内容を示します。

▶ 本書の記述について

本書で使用している用語の定義や記載内容のルールは以下のとおりです。

- ・ 特に記述がない限り「本機」は DS-103AC/105AC を意味します。
- 本機(DSシリーズ)は、ソフトキーの配置などを変更することができます。本文中の操作や表示は、工場出荷時の設定で説明します。

 〔『
 「19. 各種設定」
- 各種測定の手順の説明を読む前に、「4. 製品概要」と「5. 基本操作」をよくお読みください。項目の選択や数値等の入力については、「5.1 基本のキー操作」に詳しい説明があります。
- 測定手順は連続測定を設定した場合のものです。その他の測定方法については「備考」
 に記載がある場合がありますので、ご覧ください。
- 1999年10月1日より計量法が改正になり SI 単位に移行されました。非 SI 単位を使用 する場合はご注意ください。
- KODAK は Kodak 社の登録商標です。
- ・ Bluetooth[®]は Bluetooth SIG, INC. の登録商標です。
- ・ Windows, Windows CE は米国 Microsoft Corporation の登録商標です。
- ・ Adobe Reader は、アドビシステムズ株式会社の登録商標です。
- ・ その他、本書中の社名や商品名は各社の商標または登録商標です。

目次

1.	安全にお使いいただくために	1
2.	使用上のお願い	5
З.	レーザー製品を安全にお使いいただくために	
4.	製品概要 4.1 各部の名称 4.2 モード構成 4.3 <i>Bluetooth</i> 無線技術について	10
5.	基本操作	
6.	バッテリーの準備 6.1 バッテリーの充電 6.2 バッテリーの装着 / 取りはずし	
7.	機械の据え付け 7.1 求心作業 7.2 整準作業	
8.	 電源 ON/OFF	42 43 44 45
9.	 外部機器との接続 9.1 Bluetooth通信の設定 9.2 本機と Bluetooth機器との通信 9.3 通信ケーブル (RS232C) による接続 9.4 USB ケーブルによる接続 9.5 USB メモリーの装着 	
10	. ターゲットの視準 10.1 自動視準の設定 10.2 視準機能を使った視準 10.3 目視によるターゲット視準	
11	.角度測定 11.1 2 点間の夾角測定(水平角 0 [°] 設定)	64

11.2 決まった角度からの測定(水平角の任意角度設定)	65
11.3 基準の角度から決まった角度まで回転する	
11.4 測角してデータを出力	
12 距離測定	69
12.1 受光光量のチェック	
12.2 測距でのガイドライトの活用	71
12.3 距離と角度の同時測定	
12.4 測距してデータを出力	73
12.5 REM 測定	74
13 座標測定	76
13.1 器械点データ入力	
13.2 方向角の設定	77
13.3 三次元座標測定	
14 後方交会	82
15 枯打ナ測空	00
13.1151 杭灯た測定でのガイドライトの洋田	00 QQ
15.7 1653の足てのカイトシイトの石市	00 00
15.2 水下月2000歳7 57655 5	95
15.4 REM 測定の杭打ち	
16 オフセット測定	101
10.7 ノビクト別と	101
16.1 オフセット角度	101
16.2 オフセット2占	105
17 计冗测字	100
17. 刈辺別と	100
 17.1 俊奴の日悰 17.2 百占の カ 	100
18.面槓計算	112
19.各種設定	116
19.1 観測条件	116
19.2 器械設定	119
19.3 EDM 設定	122
19.4 タブの追加と変更	126
19.5 画面の表示項目変更	
19.6 ソフトキーのユーザー割り付け	
19.7 スターキーモードのユーザー割り付け	
19.8 单位	136

 19.9 パスワード 19.10日付・時間 19.11設定のデフォルト復帰 20.警告・エラーメッセージ 	
 21. 点検・調整 21.1 円形気泡管 21.2 電子気泡管 21.3 コリメーション 21.4 望遠鏡十字線 21.5 イメージセンサー 21.6 求心望遠鏡 21.7 測距定数 21.8 レーザー求心(オプション) 	
22.電源システム	
23. プリズムシステム	
24.特別付属品	
25.仕様	
26. 解説 26.1 360°プリズムを使った高精度な視準 26.2 正反視準による高度目盛のリセット 26.3 両差補正について	
27.文字入力表	
28.索引	

1. 安全にお使いいただくために

この取扱説明書や製品には、製品を安全にお使いいただき、お使いになる人や他の人への危 害、財産への損害を未然に防ぐために、必ずお守りいただきたいことが表示されています。 その内容と図記号の意味は次のようになっています。内容をよく理解してから本文をお読み ください。

▶ 表示の意味

この図記号は注意(警告を含む)を促す事項があることを示しています。 この図の中や近くに、具体的な注意内容が書かれています。

この図記号は禁止事項があることを示しています。 この図の中や近くに、具体的な禁止内容が書かれています。

この図記号は必ず行っていただきたい事項があることを示しています。 この図の中や近くに、具体的な指示内容が書かれています。

▶ 全体について

炭坑や炭塵の漂う場所、引火物の近くで使わないでください。爆発の恐れがあ ります。

● 分解・改造をしないでください。火災・感電・ヤケド・レーザー被ばくの恐れ 分解禁止 があります。

⊘ 禁止

 \bigcirc

禁止

指示

指示

 \bigcirc

禁止

望遠鏡で太陽を絶対に見ないでください。失明の原因になります。

望遠鏡で反射プリズムなど反射物からの太陽光線を見ないでください。失明の 原因になります。

太陽観測の際には専用の太陽フィルターをご使用ください。太陽観測の際、望 遠鏡で直接太陽を見ると、失明の原因になります。

格納ケースに本体を入れて持ち運ぶ際には、必ず格納ケースのロックをすべて 掛けてください。本体が落下してケガをする恐れがあります。

🛆 注意

格納ケースを踏み台にしないでください。すべりやすくて不安定です。転げ落

たてケガをする恐れがあります。

格納ケース本体やベルトが傷んでいたら機器を収納しないでください。ケース
や機器が落下して、ケガをする恐れがあります。

モーター駆動中に機械に手を触れたり、接眼レンズに眼を近づけたりしないでください。

^{禁止} 手や眼にケガをしたりする恐れがあります。

● 垂球を振り回したり、投げたりしないでください。人に当たりケガをする恐れ ☆止 があります。

ハンドルは本体に確実に取り付けてください。ゆるんでいるとハンドルを持ったときに本体が落下して、ケガをする恐れがあります。

整準台の着脱レバーを確実に締めてください。ゆるんでいるとハンドルを持ったときに

^{指示}が落下して、ケガをする恐れがあります。

▶ 電源について

 \bigcirc

禁止

禁止

\land 警告

S 端子をショートさせないでください。大電流による発熱や発火の恐れがありま ☆止 す。

充電器に衣服などを掛けて充電しないでください。発火を誘発し、火災の恐れ
 _{禁止}
 があります。

指定されているバッテリー以外使わないでください。火災・破裂・発熱の原因
 _{禁止}
 となります。

傷んだ電源コード・プラグ、ゆるんだコンセントは使わないでください。火 災・感電の恐れがあります。

指定されている電源コード以外は使わないでください。火災の原因になりま す。

バッテリーの充電には、専用の充電器を使ってください。他の充電器を使うと、電圧や+-の極性が異なることがあるため、発火による火災・ヤケドの恐指示れがあります。

Ω

指示

 \bigcirc

禁止

禁止

バッテリーや充電器などを火中に投げ込んだり、加熱したりしないでくださ い。破裂してケガをする恐れがあります。

バッテリーを保管する場合は、ショート防止のために、端子に絶縁テープを貼 るなどの対策をしてください。そのままの状態で保管すると、ショートによる 火災やヤケドの恐れがあります。

水にぬれたバッテリーや充電器を使わないでください。ショートによる火災・ ヤケドの恐れがあります。

ぬれた手で電源プラグを抜き差ししないでください。感電の恐れがあります。

 (\mathbb{R})

禁止

注意

注意

バッテリーからもれた液に触らないでください。薬害によるヤケド・カブレの 恐れがあります。

▶ 三脚について

指示

指示

機械を三脚に止めるときは、定心かんを確実に締めてください。不確実だと機 械が落下して、ケガをする恐れがあります。

機械をのせた三脚は、蝶ねじを確実に締めてください。不確実だと三脚が倒 れ、ケガをする恐れがあります。

三脚の石突きを人に向けて持ち運ばないでください。人に当たり、ケガをする 恐れがあります。

禁止

三脚を立てるときは、脚もとに人の手・足がないことを確かめてください。 手・足を突き刺して、ケガをする恐れがあります。

日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日

持ち運びの際は、蝶ねじを確実に締めてください。ゆるんでいると脚が伸び、 ケガをする恐れがあります。

▶ Bluetooth 無線技術について

ります。

禁止

\mathbb{A} 警告 \bigcirc 病院内で使用しないでください。医療機器の誤動作の原因になる恐れがありま す。 禁止 0 心臓ペースメーカーの装着部位から 22cm 以上離して使用してください。電 波によりペースメーカーの動作に影響を与える恐れがあります。 指示 \bigcirc 飛行機の中で使用しないでください。飛行機の計器などの誤動作の原因になる 恐れがあります。 禁止 自動ドア、火災報知器等の自動制御機器の近くで使用しないでください。電波 \bigcirc が自動制御機器の動作に影響を与え、誤動作による事故の原因になる恐れがあ

4

2. 使用上のお願い

▶ バッテリーの充電について

バッテリーは、必ず以下の温度範囲内で充電してください。
 充電温度範囲:0~40 ℃

▶ バッテリーの保証について

・ バッテリーは消耗品のため、充電を繰り返すことによる容量低下は保証対象外となります。

▶ 望遠鏡について

太陽光に望遠鏡を直接向けないでください。また、使用しないときはレンズキャップを取り付けてください。太陽光が機械に直接入ると内部機能に支障をきたすことがあります。
 太陽を観測する際は専用フィルタを使用してください。
 「ア「24 特別付属品」

▶ 着脱レバーなどについて

 出荷の際には、本体が整準台からはずれないよう 着脱レバーの固定ねじが締めてあります。最初に ご使用になる時には、このねじをドライバーでゆ るめてください。また、本機を輸送するときには、 本体が整準台からはずれないように着脱レバーの 固定ねじをドライバーで締めてください。

 ハンドルは取りはずしができます。取り付けて測量する場合は、ハンドル取り付けロック をしっかり締めてください。

▶ 防塵・防水について

本機の防塵、防水性能は IP65 に適合しています。使用にあたっては以下のことにご注意ください。

- バッテリーカバーとコネクターキャップおよび外部メモリーハッチはきちんと閉めてください。
- バッテリーカバー内部、接点、およびコネクターに水分や塵がつかないように十分注意してください。これらの部分から機械内部に水分や塵が侵入すると、故障の原因となります。
- 格納するときは、本体と格納ケース内部が乾いていることを確認してください。内部に水 滴がついていると、本体がさびる原因となります。
- バッテリーカバーおよび外部メモリーハッチのゴムパッキンにひび割れ変形がある場合は、そのまま使用せずに交換してください。
- 防水性能を維持するために2年に1回のゴムパッキンの交換をおすすめします。ゴム パッキンの交換は最寄りの営業担当までご依頼ください。
- スピーカーおよび照度センサー/マイクの穴を先端のとがったもので押さないでください。内部の防水シートが傷ついて、防水性が保てなくなります。

▶ バックアップ電池(リチウム電池)について

本機のカレンダー・クロック機能を保持するために、リチウム電池を使用しています。通常 の保存・使用環境(約 20 ℃、湿度約 50%)では、約5年間使用できますが、使用状況に よっては短くなることがあります。リチウム電池の電圧が低下したり、なくなったりすると、 年月日時間の表示が正しくなくなり、「時計エラー」のメッセージが表示されます。リチウム 電池の交換は最寄りの営業担当までご依頼ください。

▶ 整準台について

・ 整準台は必ず付属の整準台をお使いください。多角測量(トラバース測量)を行う場合は、ターゲット側も同型の整準台をお使いになると安定した測定が行えます。

▶ データのバックアップについて

データの消失などを防ぐため、定期的に測定データのバックアップ(データの外部機器への転送など)をしてください。

▶ その他のお願い

- 機械を直接地面に置かないでください。土やほこりは機械の底板のねじ穴を傷めます。
- レンズフード、ダイアゴナルアイピース、および太陽フィルターを使用しているときの鉛 直角の回転は、十分注意してください。機械本体に付属品がぶつかると、機械・付属品双 方を傷めます。
- ・ 落下や転倒など、大きな衝撃・振動を与えないでください。
- 機械を雨、霧から傘等で保護してください。
- ・ 移動する時は必ず三脚から本体を取りはずしてください。
- バッテリーを本体から取りはずすときは、電源を OFF にしてください。
- 格納する時は、本体からバッテリーを取りはずしてください。
- 本体がさびないよう、格納ケースのフタを閉める前に、本体と格納ケースの内部が乾いていることを確認してください。
- 長期間にわたる連続使用や湿度の高い環境下など、特殊な条件でお使いになる場合は、あらかじめ最寄りの営業担当にご相談ください。ご使用の環境によっては、保証の対象外となります。

▶ メンテナンスについて

- ・ 作業中雨がかかった場合には、水分をよくふき取ってください。
- ・ 測量終了後は、ケースにしまう前に必ず本機各部を清掃してください。特にレンズは、必ず十分に手入れをしてください。付属のレンズ刷毛を使って細かな塵を払ってから、レンズに息を吹きかけて曇らせ、付属のワイピングクロスで軽くふいてください。
- 本体の表示部は乾いたやわらかい布で軽くふいてください。表示部以外の部分および格納 ケースが汚れた場合は、水または薄めた中性洗剤に浸したやわらかい布を固く絞って汚れ をふきとってください。アルカリ性洗剤や有機溶剤は使用しないでください。
 アッチパネル操作の一時的な無効:「5.2表示部とその操作」、「19.2器械設定」
- 湿気が少なく、室温が安定した場所に保管してください。
- ・ 三脚は、長期間使用すると石突き部のゆるみ・蝶ねじの破損などが原因でガタが生じる場合があります。時々各部の点検・締め直しを行ってください。

- 機械の回転部分・ねじ部分に異物が入ったと思われるときや、望遠鏡の内部レンズ・反射 プリズムなどに水滴の跡やカビなどを発見したときは、最寄りの営業担当にご連絡ください。
- 長期間使用しない場合でも、3ヶ月に一度は点検を行ってください。
 「21. 点検・調整」
- 通算の使用時間 4,000 ~ 5,000 時間ごとに駆動部のグリースを交換してください。グリースの交換は、最寄りの営業担当にご相談ください。
- 機械を格納ケースから取り出す際、無理にひっぱりださないでください。取り出した後は、湿気が入らないようにケースは閉めておいてください。
- 常に高い精度を保持するため、年に1~2回は最寄りの営業担当による定期点検検査を 受けることをおすすめします。

▶ 海外への輸出について (米国の輸出許可の確認)

- ・本製品は EAR(Export Administration Regulation)の対象となる部品・ユニットが組み 込まれている他、ソフトウェア・技術を含んでおります。輸出国(お持込みになる国)に よっては、米国の輸出許可が必要となります。このような場合には、お客様ご自身で手続 きしていただきますようお願いいたします。 なお、輸出許可が必要となる国は 2013 年 5 月時点で以下のとおりです。変更になる場 合もありますので、米国輸出管理規則(EAR)をご自身でご確認ください。 北朝鮮 イラン シリア
 - スーダン
 - キューバ

米国 EAR の URL:http://www.bis.doc.gov/policiesandregulations/ear/index.htm

▶ 海外への輸出ついて (電波法への適合の確認)

 ・ 本製品は無線機能を搭載しています。海外で使用する場合は、その国の電波法への適合が 必要になります。輸出(お持ち込み)でも、電波法への適合が必要になることがありま す。あらかじめ最寄りの営業担当にご相談ください。

▶ 免責事項について

- 火災、地震、第三者による行為、その他の事故、使用者の故意または過失、誤用、その他 異常な条件下での使用により生じた損害に対して、当社は一切責任を負いません。
- 本機器の使用または使用不能から生じた付随的な損害(データの変化・消失、事業利益の 損失、事業の中断など)に対して、当社は一切責任を負いません。
- 取扱説明書で説明された以外の使い方によって生じた損害に対して、当社は一切責任を負いません。
- 接続機器との組み合わせによる誤動作などから生じた損害に対して、当社は一切責任を負いません。

3. レーザー製品を安全にお使いいただくために

本機は「JIS レーザ製品の安全基準(JIS C 6802:2014)」で定められた「クラス 3R」/ 「クラス 1」レーザー製品です。

	装置	レーザークラス
	測距光 (ターゲットの設定をノンプリズムにしている とき)	クラス 3R
対物レンズ内 EDM 装置	測距光 (ターゲットの設定をプリズムまたは反射シー トにしているとき)	クラス 1
	レーザー照準	クラス 3R
	自動視準光	クラス 1
レーザー求心装置(オプション) クラス 2		クラス2

4

 対物レンズ内 EDM 装置のレーザーは「クラス 3R」ですが、「ターゲット」をプリズム・ 反射シートに設定した測定時のレーザー射出量は「クラス 1」相当です。ノンプリズム測 定時と比べて、より安全なレベルとなります。

レーザー製品を安全にお使いいただくために、次のことにご注意ください。

▲ 警告

- この取扱説明書に書かれた手順以外の操作や調整は、危険なレーザー放射の被ばくをもたらす恐れがあります。
- 故意に人体に向けて使用しないでください。レーザー光は眼や人体に有害です。万一、レー ザー光による障害が疑われるときは、速やかに医師による診察処置を受けてください。

- レーザー光を直接のぞきこまないでください。
- レーザー光を凝視しないでください。眼障害の危険があります。
- レーザー光を望遠鏡や双眼鏡などの光学器具を通して絶対に見ないでください。眼障害の 危険があります。
- レーザーがターゲットからはずれて射出されないように視準してください。

▲ 注意

- 始業点検、一定期間ごとの点検・調整を行い、正常なレーザー光が射出される状態で使用してください。
- 測定時以外は電源を切るか、レーザー射出口をレンズキャップで遮断するようにしてください。
- 廃棄する場合は、レーザー光を出さないように通電機能を破壊するなどの処置をしてください。
- レーザー製品は、車を運転する人や歩行者の目の高さを避けて設置してください。レーザー 光が不意に目に入ると、まばたきによって不注意状態を生じ、思わぬ事故を誘発する恐れ があります。
- 鏡・ガラス窓などレーザー光が強く反射する構造物に当たらないように設置してください。 レーザーの反射光も人体に有害です。
- 本製品を使用される方は、以下の項目に関する訓練を受けてください。
 - ・本製品の使用方法(本取扱説明書をよくお読みください)
 - ・危険防御手順(本章をよくお読みください)
 - ・人体保護の必要性(本章をよくお読みください)
 - ・事故報告手順(万一レーザー光による障害が生じた場合の搬送手順や医師への連絡方法 をあらかじめ定めてください)
- レーザー放射にさらされる区域内の作業者は、お使いの機械のレーザー波長に対応した保 護めがねを着用してください。
- レーザーを用いる区域には、レーザー警告標識を掲示してください。
- レーザー照準機能を使った場合は、使用後必ずレーザー射出を OFF にしてください。測距 が停止してもレーザー照準機能のレーザー光は自動で OFF になりません。

4. 製品概要

4.1 各部の名称

▶ 各部の名称と機能

- 1 ハンドル
- 2 Bluetooth アンテナ
- 3 外部メモリーハッチ
 - (USB ポート、リセットボタン)
- 4 機械高マーク 🛍
- 5 バッテリーカバー
- 6 表示器
- 7 円形気泡管
- 8 データ入出力/外部電源コネクター
- 9 円形気泡管調整ねじ
- 10 底板
- 11 整準ねじ
- 12 整準台固定ねじ
- 13 求心望遠鏡合焦つまみ
- 14 求心望遠鏡接眼レンズつまみ
- 15 求心望遠鏡焦点鏡カバー
- 16 照度センサー
- 17 対物レンズ
- (「レーザー照準機能」あり 🛍)
- 18 ガイドライト 🛍
- 19 棒磁石取り付け部
- 20 ハンドル固定ねじ
- 21 鉛直ジョグ 🛍
- 22 キーボード
 - ☞「5.1 基本<u>の</u>キー操作」
- 23 トリガーキー 🛍
- 24 水平ジョグ 🕅
- 25 スタイラス (ペン)
- 26 着脱レバー
- 27 望遠鏡接眼レンズ
- 28 望遠鏡接眼レンズつまみ
- 29 望遠鏡つまみ
- 30 合焦つまみ
- 31 照準器 🛍
- 32 機械中心マーク

解し 機械高マーク

本機の機械高は以下の通りです。

•196mm

(整準台取り付け面から機械高マークまで)

器械点設定で入力する「器械高」は、測点(本機 を設置した点)から「機械高マーク」ま での高さです。

解 レーザー照準機能

赤色レーザーを射出します。暗い場所での測定で、望遠鏡をのぞかずにターゲットの方 向に合わせることができます。

解し ガイドライト

ガイドライトを使うと現在の機械の状態を知ることができ、杭打ち測定なども効率的に 行えます。ガイドライトは左右に緑と赤に分かれています。

禄赤

(機械が正の状態で対物レンズ側から見た場合)

●ガイドライトの状態と意味

ライトの状態	意味
遅い点滅(赤と緑同時)	待機中
	サーチ中
速い点滅(赤と緑同時)	測距中(連続測定時)
	受光光量チェック中
赤と緑の交互占減	測距エラー(信号なし、視準エラー)
がと縁の交互点滅	サーチエラー(エラー画面のみ)

【ご「12.2 測距でのガイドライトの活用」、「15.1 杭打ち測定でのガイドライトの活用」

解 水平ジョグ・鉛直ジョグ

機械上部と望遠鏡は(手で)フリーで回転させることができますが、水平ジョグ・鉛直 ジョグを使うと微調整ができます。 ジョグを回す速さに応じて、水平角・鉛直角の回転速度が変わります。 € 「10.1 自動視準の設定」 手順 3

解しトリガーキー

画面に太字で表示されたソフトキーが表示されているときにトリガーキーを押すと、本 機は太字で表示されたソフトキーを押したときと同じ動作をします。一般的な測定作業 を行うことができます。

解 照準器

測点に本機の方向を合わせるときに使用します。照準器をのぞき、望遠鏡をターゲット の方向に合わせます。

▶ Bluetooth アンテナ

Bluetooth無線技術を使った通信ができます。

アンテナは、作業中や格納時にぶつけたりしないように注意してください。破損するおそれがあります。

▶ ハンドルの取りはずし/取り付け

本体のハンドルは取りはずすことができます。ハンドル固定ねじをゆるめてハンドルをはずします。

4

- ハンドルを取りはずすときは、必ずハンドルの両側を持って真上に持ち上げてください。
 片手で持ち上げたり傾けたりするとハンドルに取り付けられた接点を破損する恐れがあります。
- ・ 天頂付近にターゲットがあるときはハンドルを取りはずしてください。

ハンドルを取り付けるときは、図のように位置を合わせてから、ハンドル固定ねじ(2ヶ所) を締めます。

▶ 整準台の取りはずし

- 整準台固定ねじを2~3回転まわして 緩める
- 2. 着脱レバーを左に回して緩める
- 機械を真っすぐ上へ持ち上げて取りはず す

▶ 整準台の取り付け

- 整準台固定ねじが緩んでいることを確認 する
- 2. 機械底部にある位置決めコマと整準台の 位置決め溝を合わせてのせる

3. 着脱レバーを右に回してしっかり締める

4. 整準台固定ねじを回して締める

備考

 高精度の測定をするには整準台固定ねじを しっかり締めてください。モーター駆動時 の精度変化が生じにくくなります。

4.2 モード構成

本機のモード構成とモード間を移るためのキー操作を以下に示します。

4

- ・ 測距中は、モードの切り替えはできません。
- ・(PRG)を押した直後(「プログラム実行中」メッセージの表示中)は(PRG)による モードの切り替えや電源の ON/OFF は行わないでください。

備考

・「測量基本 CE」はオプションプログラムです。

4.3 Bluetooth 無線技術について

4

- Bluetooth 無線技術は、Bluetooth デバイス搭載製品のみ使用できます。
- 海外で使用する場合は、その国の電波法の認証が必要になります。ご使用の際は、あらかじめ最寄りの営業担当にご相談ください。
- 通信内容および通信に付随する内容の補償はできません。重要な通信を行う場合は事前に
 問題なく通信ができるかどうか十分なテストを行ってください。
- ・ 他人の通信内容を、第三者にもらしたりしないでください。

▶ Bluetooth 無線技術で使用する電波について

本機の Bluetooth 無線技術の使用周波数は、2.4GHz 帯域です。下記の機器などは、

Bluetooth 無線技術と同じ電波の周波数帯を使用しています。

これらの機器の近くで本機を使用すると、電波の干渉を発生するおそれがあります。そのた め、通信ができなくなったり速度が遅くなったりする場合があります。

- ・電子レンジ/ペースメーカー等の産業・科学・医療用機器など
- ・工場の製造ライン等で使用されている移動体識別用の構内無線局(免許を要する無線 局)
- ・特定小電力無線局(免許を要しない無線局)
- ・IEEE802.11b または IEEE802.11g 無線 LAN 機器

本製品を使用する上で、無線局の免許は必要ありませんが、以下の注意をお守りください。 ● 電子レンジの近くでは使用しないでください。

・強い電波の干渉により正常に通信できない場合があります。通信時は電子レンジから 3m 以上離れてください。

- 構内無線局や特定小電力無線局の近くでは、以下の対応を行ってください。
 - ・通信する前に、近くで移動体識別用の構内無線局および特定小電力無線局が運用されていないことを確認してください。
 - ・万一、本機から移動体識別用の構内無線局に対して電波干渉の事例が発生した場合には、速やかに電波の発射を停止した上、混信回避のための処置等(例えば、有線による接続など)を行ってください。
 - ・その他、本製品から移動体識別用の特定小電力無線局に対して電波干渉の事例が発生し た場合などは、最寄りの営業担当にご相談ください。
- IEEE802.11b または IEEE802.11g の無線 LAN 機器の近くで使用する場合は、使用しない機器の電源を切ってください。

・電波障害が発生し、通信速度の低下や接続不能になる場合があります。

- テレビ、ラジオを本機の近くでは、できるだけ使用しないでください。
 - ・テレビ、ラジオなどは、Bluetooth無線技術とは異なる電波の周波数帯を使用している ため、本機の近くでこれらの音響機器を使用しても通信に影響はありません。ただし、 本機を含む Bluetooth機器が発する電磁波の影響によって、これらの音響機器の音声や 映像にノイズが発生する場合があります。

▶ 通信上の注意

- 良好な通信のために 途中に障害物がある場合には、通信距離が短くなります。特にコンクリートや鉄筋コンク リート、金属がある場合は通信できません。木材やガラス、プラスチックなどは通過しま すので、通信はできます。ただし、内部に鉄骨や鉄板、アルミ箔を使用した断熱材等使用 されている場合や、金属粉を混ぜた塗料で塗装してある場合も通信できないことがありま す。
 - ・防水のためにケースに入れる場合はビニールやプラスチックのケースに入れてください。金属で覆うと通信できません。
 - ・アンテナの向きが変わると通信距離が短くなることがあります。
- 雨天や霧、森林の中、人ごみや地面の近くでは通信距離が短くなることがあります。
 - ・本機で使用している電波は、水分に吸収され電波が弱くなることがあります。また、地面の近くでは電波が弱くなりますので、無線装置はできるだけ高いところで使用してください。

4 .

弊社は、すべての Bluetooth 対応機との通信を保証するものではありません。

5. 基本操作

本機の操作をする上で基本となる操作を説明します。各種測定の手順の説明を読む前によく お読みください。

5.1 基本のキー操作

● 電源 ON/OFF

(_)	電源 ON
〔①〕長押し(約1秒)	電源 OFF

▶ レチクル照明/キーライト ON/OFF とバックライトの明るさ切り替え

[$\dot{\wp}$] 押すたびにレチクル照明・キーライトが ON / OFF (キーライトが ON のときはバックライトが暗くなります)
--

【Ĵ バックライトの明るさ:「 19.2 器械設定」

● スターキーモードへの切り替え

(★)	押すたびにスターキーモードへ移動/元の画面へ戻る
『€■「5.4 スターキーモード」	

● プログラムモードへの切り替え

|--|

・(PRG)を押した直後(「プログラム実行中」メッセージの表示中)は(PRG)による モードの切り替えや電源の **ON/OFF** は行わないでください。

● ターゲットタイプの切り替え

(プリズム/ 360°プリズム/シート/ノンプリズム)	(20)ターゲットタイプ切り替え(プリズム/360°プリズム/シート/ノンプリズム)
-----------------------------	--

〔ご「19.3 EDM 設定」

備考

4

・ステータスバーやスターキーモードのアイコンで切り替えることもできます。 『ア「5.2 表示部とその操作 ステータスバー」、「5.4 スターキーモード」

● レーザー照準/ガイドライトの ON / OFF

〔※〕長押し	レーザー照準/ガイドライトの ON / OFF
(「ピッ」と鳴るまで押	
し続けます)	

【♪ 〔※〕を押したときのレーザー照準/ガイドライトの切り替え:「 19.3 EDM 設定」

備考

・ステータスバーやスターキーモードのアイコンで切り替えることもできます。 『? 「5.2 表示部とその操作 ステータスバー」、「5.4 スターキーモード」

● ソフトキーのページの切り替え

(FUNC)	観測モード画面のソフトキーページ切り替え
--------	----------------------

● 文字/数値の入力

(α)	文字入力切り替え(数値/英字/カタカナモード)
〔α〕長押し(約1秒)	押すごとに全角モード ON / OFF
$(Shift) + (1) \sim (9)$	(英字モード時)1 文字ずつのアルファベットの大文字/小文 字入力切り替え
(Shift)長押し(約1秒)	(英字モード時)アルファベットの大文字/小文字入力切り替え
(Shift) + (α)	<入力パネル>の表示/非表示
(0) ~ (9)	(数値モード時)数字の入力
	(英字モード時)アルファベットの入力(各キーの上に標記さ れている 3 文字と数字を順に表示・入力)
	(カタカナ/ひらがなモード時)カタカナ/ひらがなの入力 (各キーの上に標記されている行の文字を表示・入力)

(•)	(数値モード時)小数点の入力							
	(英字モード時)記号の入力							
	(カタカナモード時)「」や「」の入力							
(+/-)	(数値モード時)符号の入力							
	(英字モード時)記号の入力							
	カタカナモード時)「一」の入力							
(ESC)	入力したもの全てを取り消す							
(TAB)	次の項目へ移動							
(B.S.)	左側の文字または選択した文字列を消去							
(S.P.)	スペースを入力(時間の設定では、数値が1増加)							
(◀) / (▶)	カーソルを左右に移動							
(▲) / (▼)	カーソルを上下の項目に移動							
(ENT)	入力の確定							

【Ĵ 入力のルール・特殊文字の入力:「27. 文字入力表」、「5.3 文字入力パネルによる文字入力」

項目の選択

(▲) / (▼)	カーソル/選択項目の上下移動					
(◀) / (▶)	コーソルの左右移動と選択肢の表示					
(TAB)	次の項目へ移動					
(S.P.)	(全角モード OFF 時)選択肢の表示					
(ENT)	選択の確定					

● タブの選択

(▲) / (▼)	タブとタブページ内のカーソルの上下移動
(◀) / (▶)	タブページの移動

▶ タブ:「5.2 表示部とその操作」

● その他

(ESC)	1つ前の画面へ戻る

▶ 手順 半角カタカナ入力 (新規デバイス名に「パソコン」と入力する場合)

1. 入力モードをカタカナに切り替える 入力モードの表示(ステータスバーの下から 2段目)が「_ア」になります。

備考

- ・(α)を長押しして全角モードの ON/OFF します。
- ・ (α) を押して文字入力切り替えをします。
- 2. (6) を1回押す

「八」と表示されます。

接続デバイス	, ×
新規デバイス 🗙 🗙	477
デバイス名 ハ	0
	۲
	11
	7
OK	1
アーナ 新規 即际 OK	P1

3. (・)を2回押す

「ハ」が入力され、カーソルが次の入力位置に 移動します。「[°]」と表示されます。

接続デバイス	×
新規デバイス ×	111
デバイス名 パー	0
	۲
	11
	1
	7
OK	7
	P1

 (9) を5回押す
 「[°]」が入力され、カーソルが次の入力位置に 移動します。「ソ」と表示されます。

接続デバイス			_	×
新規デバイス			×	-772
デバイス名	n°2			0
アドレス				۲
1				
				ٹا۔
				7
	OK			7
ワーナ 第	訂規	削除	ОК	P1

 入力を続け、入力が完了したら(ENT)を 押す 入力が確定し、次の項目の入力に移ります。

5.2 表示部とその操作

画面の選択や操作は、キーボード、スタイラス(ペン)や手によるタッチパネル方式のいず れでもできます。 タッチパネルの操作は、一時的に無効にすることができます。 『『「19.2 器械設定」

4

表示部上をひっかいたり、スタイラス以外の先のとがったものでつついたりしないでください。

▶ スタイラスの操作

スタイラスを使って、表示部上に表示されているメニュー・ボタンなどの選択およびスク ロールバーの移動などをすることができます。

▶ タッチパネル操作の一時的な無効

表示部の掃除などのために、タッチパネルの操作を一時的に無効にすることができます。 ステータスバーやスターキーモードのタッチパネルアイコン ネル一時無効>が表示されます。

表示中はタッチパネルの操作が無効になります。(ESC)を押すと画面は閉じ、タッチパネル の操作が有効になります。

▶ 画面の表示と操作

- ・ 【×】または(ESC)を押すと、画面を閉じます。
- タブ、ソフトキー、項目、および文字の表示は、変更することができます。
 『す「19. 各種設定」

▶ トップメニュー

▶ 観測モードの画面 SHV タブ

	観測				×	
	SHV 距離	グラフィック	ク			
	斜距離		11.7	'48 ^m	0	—(1)距離表示
	鉛直角	8	0°26	'27"		——(2)鉛直角表示
	水平角	-	6°25	'2∩"		
			0 25	20	7	—(3)水平角表示
ソフトキー ――	サーチ	E-9-	0セット	測定	P1	

(1) 距離の表示

斜距離/水平距離/高低差に表示を切り替えられます。 ☞「19.1 観測条件」

(2) 鉛直角の表示

鉛直角(天頂0°)/高度角(水平0°/水平±90°)に表示を切り替えられます。 ☞「19.1 観測条件」 【ZA /%】を押すと角度表示/勾配%に表示を切り替えられます。大文字になっている のが選択されている表示方法です。 ☞【ZA /%】の割り付け:「19.6 ソフトキーのユーザー割り付け」

(3) 水平角の表示

【R / L】を押すと、水平角(水平角右回り)/水平角L(水平角左回り)に表示を切り 替えられます。大文字になっているのが選択されている表示方法です。 ☞【R / L】の割り付け:「19.6 ソフトキーのユーザー割り付け」

備考

・「距離」タブには、水平距離と高低差も表示されます。

測距中画面

▶ 入力と設定の画面

▶ 観測モードの画面 グラフィックタブ

後視設定により設定した北方向を表示

ソフトキー2ページ目で表示の変更をすることができます。

- 【設定】 : <グラフ設定>で、画面の上方向の表示方法と画面の中心の表示方法(自動 中心)の選択をします。
- 【視準点】 : 表示を初期状態に戻します。
- 【拡大】 : 画面中心を基点に拡大表示します。
- 【縮小】 : 画面中心を基点に縮小表示します。

▶ 各画面のメニュー選択

メニューを選ぶには、各メニューをタップまたは番号をキー入力します。

▶ ステータスバー

ステータスバーの各アイコンで、機械の状態が分かります。 各アイコンをタップすると選択切り替えや機能の ON / OFF などが行えます。 長押しすると、選択肢の一覧と設定画面への移動メニューが表示されます。

観測				X		
SHV 12E#	雛 グラフィッ	ク	(Ν	
水平距離				0 🔋	П	
				•	П	
鉛直角	Q	າດຳລ	יידרי			 ステータスバー
	C	0 20	2/		П	
水平角		6°25	ייחכי		П	
		0 25	20		IJ	
サーチ	£-9-	0セット	測定		ľ	

ステータスバーのアイコンの配列はスターキーモードの配列と連動しています。 『こアイコンの説明:「 5.4 スターキーモード」

5.3 文字入力パネルによる文字入力

ステータスバーやスターキーモードの文字入力パネルアイコン **ア** をタップする、もしくは (SHIFT)を押しながら(α)を押すと、<入力パネル>が表示されます。(もう一度アイコ ンをタップすると閉じます)

を長押しすると、入力方法を選択できます。ひらがな/カタカナ入力・英数字入力・手書き文字から検索をして入力をする方法があります。

備考

入力パネル選択中アイコン / の上に<入力パネル>が重なって表示されている場合は
 <入力パネル>をドラッグして移動してアイコンをタップします。

▶ 文字入力パネル

入力パネル												
Esc	1	2	3	4	5	6	7	8	9	0	+ I	BS
半角	q	W	е	r	t	у	u	i	0	р	÷	→
) 英数·	• a	s	d	f	g	h	j	k	1	'	+	
φC	tl :	z)		c l	v I	o I	nГ	n,			変	換

入力パネル													
Esc	わ	6	や	ŧ	は	な	た	đ	か	あ	°	+	BS
金角	を	IJ		み	Ċ,	ΙC	ち	U	き	Ļ١	5	←	→
7.10	h	る	ゆ	む	ŝ	ಭ	2	す	<	Э	ļ	-	<u> </u>
Uр	г	ħ		め		ね	τ	せ	け	え	1	+	
小字	L	3	よ	Ð	Ιđ	の	٤	£	IJ	お	。	▲ 73	を換

英数入力パネル

ひらがな入力パネル

Esc

:漢字に変換前の入力したもの全てを取り消す

全角/半角 : カタカナ・英字・数字・記号の入力時、全角入力/半角入力の切り替え

ひら/カタ	:ひらがな入力/カタカナ入力の切り替え
小字	:「っ」、「ゅ」などの促音の入力
←BS	:左側の文字または選択した文字列を消去
$\leftarrow \rightarrow$:カーソルを左右に移動
ENT	:入力の確定
変換	:ひらがなとカタカナを漢字に変換。または英大文字小文字変換。

スペース : スペース入力

英数入力時

英数/記号	:英数字入力/記号入力の切り替え
↑	:大文字と記号/小文字と数字の切り替え

▶ 手書き検索

入力スペースに、入力したい文字をスタイラスで記入します。変換候補が表示されますので 選択します。

Esc	: 入力スペースに記入したものと変換候補の全てを取り消す
全角/半角	: 全角入力/半角入力の切り替え
ENT	:入力の確定
?	: ヘルプを表示
←BS	: 直前に書いた一画を消去
変換	: ひらがなを漢字に変換
スペース	:スペースの入力
記号	: 記号入力パネルを表示。←を押すと表示を終了

5.4 スターキーモード

スターキーモードは、基本モードの各画面から割り込みで設定確認や変更ができる便利な モードです。(★)を押すとスターキーモードに入ります。

- スターキーモードには12個のアイコンが割り付けられており、上の8個はステータス バーと連動しています。
- アイコンの割り付けを変更することもできます。

 「了 スターキーモードの配列変更:「19.7 スターキーモードのユーザー割り付け」

各アイコンで機械の状態が分かります。

アイコンをタップすると選択切り替えや機能の ON / OFF などが行えます。 長押しすると、選択肢の一覧と設定画面への移動メニューが表示されます。 各アイコンの説明は以下のとおりです(番号は上記画面と対応しています)。

(1) バッテリーアイコン

バッテリー残量を表示します。(BDC70、外部バッテリー BT-73Q/73QA 使用、気温 25 ℃、EDM 動作時) 測距時と停止時で残量表示が異なることがあります。

- - 『こう「6.1 バッテリーの充電」

外部バッテリーを使用した場合

- レベル3 満充電
- **1** レベル2 充分な残量
- レベル1 半分以下の残量
- レベル0 残量わずか 予備のバッテリーを準備してください N^{1-/}1
 - [こ] 「6.1 バッテリーの充電」
- (2) ターゲットタイプアイコン

ターゲットタイプとプリズム定数補正値の選択と設定をします。

● ጋ∜ጃኄ Omm	0	:プリズム(0mm)
360ን [•] ንንፈን -7mm	⊠ -7	360°プリズム(-7mm)
୬−Ւ Omm	🗄 O	:反射シート(Omm)
ノンフリスム	₹	:ノンプリズム
EDM設定画面へ		

ターゲットの情報を登録・編集することができます。 □ 「19.3 EDM 設定 手順 ターゲットの登録・編集」

(3) モーター駆動アイコン

自動視準の状態の選択と設定をします。選択したターゲットタイプにより表示が多少異な ります。

〔了「10.1 自動視準の設定」

■ 10.1 自動倪準の設定」					
 自動視準設定自動視準 自動視準設定なし 	:自動視準設定 ON :自動視準 OFF				
<u> </u>	:サーチを開始				
反転	:本機と望遠鏡部を反転				
モーター設定画面へ					

モーター駆動中は、状態が次のように表示されます。

- :旋回中
- :定速旋回中
- : サーチ中

備考

ኄ

e

- ・ターゲットで「ノンプリズム」を選択すると、自動視準はできません。 ◄ ⊕ が表示されます。
- (4) レーザー照準/ガイドライトアイコン

レーザー照準/ガイドライトの状態の選択と設定をします。

ภัสหัวสหอง 🗲	:ガイドライト ON
がイドライトOFF 🗨	▶ :ガイドライト OFF
レーザー照準ON 📀	:レーザー照準 ON
●レーサー照準OFF ・	:レーザー照準 OFF
EDM設定画面へ	

備考

・測距中はレーザー照準が OFF になります。

(5) 傾斜角自動補正アイコン

内蔵の2軸電子気泡管によって鉛直軸の傾きが測定され、鉛直角と水平角が自動的に補 正されます。補正状態の選択と設定をします。 『『ア「19.1 観測条件 🌇 傾斜角補正』

備考

・チルトオーバーレンジ(補正エラー)の場合は 塍 が表示されます。
(6) 通信状態アイコン

外部機器との通信方法の選択と設定をします。

•RS232C 🖉		:RS232C ケーブルによる接続	
Bluetooth-77%- F	4	: <i>Bluetooth</i> 無線(本機が「マスター」設定)による接続(フ ンテナが青色表示)	7
	-1	: <i>Bluetooth</i> 無線(本機が「スレーブ」設定)による接続(フ ンテナが緑色表示)	7

備考

・Bluetooth 無線(本機が「マスター」設定)による接続を選択しているときは、 A / / をタップしても、接続の開始/切断が選択できます。

外部機器との接続状態は以下のとおりです。

i) *Bluetooth* 無線による接続

本機がマスター側の場合はアンテナが青色、スレーブ側の場合はアンテナが緑色表示になります。

- 🔒 🤅 法 接続中
- : 切断中
- 🚵 : (アンテナは左右に動作表示)通信機器を検索中
- :(アンテナは静止表示)通信設定中/電源 ON 後や、「スレーブ」設定へ切り替えた時の通信準備中
- 🔒 : 接続エラー(点滅表示)(設定によって色が異なります)
- ii) 風 : RS232C ケーブルによる接続

備考

- ・データ送信/送受信中は矢印が表示されます。(例:) / 2000) 赤い矢印が表示されているときは、通信に失敗したデータの再送信を要求している状態です。
- (7) 入力モードアイコン

入力モードの切り替えや設定をします。全角モードの ON/OFF は入力モードアイコンを 長押ししてメニューから選択、または〔α〕を長押しして切り替えます。

全角	モード OFF のとき	全角モード ON のとき		
u]	半角数字	1	全角数字	
шA	半角英大文字	А	全角英大文字	
⊔a	半角英小文字	а	全角英小文字	
u7	半角カタカナ	あ	全角ひらがな	

『↓ キーボードでの文字入力切り替え:「5.1 基本のキー操作 ● 文字/数値の入力」

- (8) 文字入力パネルアイコン して「5.3 文字入力パネルによる文字入力」
- (9) PPM 設定(気象補正係数)アイコン 現在設定されている気象補正係数が表示されます。 EDM の設定をします。

- (10)設定モードアイコン 設定モードに移行します。 しま「17.2 各種設定」
- (11) タッチパネルアイコンタッチパネル操作の一時無効の選択と設定をします。

タッチパネル一時無効	:タッチパネルー時無効
器械設定画面へ	

備考

・ 測距中、データ送受信中はタップや長押しをしても選択や設定はできません。

(12) ディスク使用容量アイコン

本機に搭載または接続しているディスク(メモリー)の使用状況が表示されます。

- ٵ : 20%以下
 - 20%から 50%
 - : 50%以上

アイコンを長押しすることで、ディスク使用状態の詳細情報が表示されます。

内部ディスク	
使用領域	???? KB
空き領域	???? KB
容量	???? KB
リムーバブル デ	ィスク
リムーバブル デ 使用領域	イスク ???? KB
リムーバブル デ 使用領域 空き領域	イスク ???? KB ???? KB

内部ディスク

使用領域	: 本機に搭載しているディスク領域の使用済み領域
空き領域	: 本機に搭載しているディスク領域の空きディスク領域
容量	:本機に搭載しているディスク領域

リムーバブルディスク

使用領域	:	本機に接続している外部ディスク領域の使用済み領域
空き領域	:	本機に接続している外部ディスク領域の空きディスク領域
容量	:	本機に接続している外部ディスク領域

4

・リムーバブルディスクの表示は、本機に外部ディスクを接続した場合にのみです。

5.5 プログラム選択とその操作

プログラムモードでは、インストールされているプログラムの一覧が表示されます。プログ ラムは1画面に5つまで表示され、次のページがあるときは矢印が表示されます。 ページの移動やプログラム表示順序の変更も行えます。

備考

・ 「測量基本 CE」はオプションプログラムです。

▶ ページの移動

ページを移動するには (▲) / (▼) / (▶) / (◀) を押す、または画面の矢印をタッ プします。

6. バッテリーの準備

6.1 バッテリーの充電

工場出荷時にはバッテリーは充電されていません。

4

- ・ 充電器は、使用中多少熱を持ちますが異常ではありません。
- ・ 指定のバッテリー以外の充電はおやめください。
- ・ 屋内専用です。屋外で使用しないでください。
- 充電ランプが点滅しているときでも、充電温度範囲外では充電はされません。必ず充電温 度範囲内で充電してください。
- 充電完了後、再度連続して充電しないでください。バッテリーの性能が劣化することがあります。
- ・ 充電器からバッテリーを取りはずして保管してください。
- ・ 使用しないときは電源プラグからコンセントを抜いてください。
- バッテリーは、下記の温度範囲で、湿度の低い乾燥した場所に保存してください。長期保存の場合、最低6ヶ月に一回、充電をしてください。

保存期間	温度範囲
~] 週間	-20 ~ 50 °C
1週間~1ヶ月	-20 ~ 45 °C
1~6ヶ月	-20~40°C
6ヶ月~1年	-20 ~ 35 °C

バッテリーには寿命があります。バッテリーは化学反応を利用した化学製品です。使用していなくても長期保管によって劣化し、容量も低下します。正常に充電しても使用時間が短くなった場合は寿命と判断して、新しいものをご購入ください。

▶ 手 順

- 1. 電源ケーブルを充電器に取り付け、プラ グをコンセントに差し込みます。
- バッテリーの溝と充電器のガイドを合わ せ、矢印方向に押して装着します。

3. 充電ランプが点滅し、充電を開始しま す。

- 4. 充電が完了すると、充電ランプが点灯し ます。
- 5. 充電が終了したら、バッテリーをはず し、プラグをコンセントから抜きます。

備考

・スロット1と2:	先に装着したバッテリーの充電から開始します。バッテリーを2
	つ装着して、プラグを差し込んだときは、スロット1に装着し
	たバッテリーの充電を開始し、完了後スロット2に装着した
	バッテリーの充電に移行します。(手順 2)
・充電ランプ:	充電ランプが消灯しているときは、充電温度範囲外か、バッテ
	リーが正しく装着されていません。以上のことに注意しても状態
	が変わらない場合は、最寄りの営業担当にご連絡ください。(手
	順 2、3)
・充電時間:	(25 ℃、バッテリー 1 つあたり)
	BDC70:約 5.5 時間

(低温 / 高温時には、記載の時間以上かかることがあります)

 特別付属品(別売)の電源ケーブルを使用することで、海外でもお使いになれます。詳細 は最寄りの営業担当にご連絡ください。

6.2 バッテリーの装着 / 取りはずし

充電されたバッテリーを装着します。

4

- ・ 本機には付属のバッテリー(BDC70)をお使いください。
- バッテリーを取りはずすときは電源を OFF にしてください。電源が入ったままバッテ リーを取りはずすと、リセット処理が行われることがあります。また、ファイルやフォル ダーが壊れることがありますのでご注意ください。
- ・ 電源が入ったままバッテリーカバーを開けないでください。
- バッテリーカバー内部の突起(開閉センサー)を破損しないようご注意ください。また、 指などを挟まないようご注意ください。
- ・ バッテリーの装着/取りはずしの際は内部に水滴や塵が入らないようご注意ください。
- ・ バッテリーは、本体や充電器から取りはずして保管してください。

▶ 手 順 バッテリーの装着

 バッテリーカバーの両端のボタンを押し ながら、カバーを開く

4

- ・バッテリーを斜めに挿し込むと本体や バッテリーの端子を破損する恐れがあり ます。
- 3. カバーを閉じる

「カチッ」と音がするのを確認してくださ い。

7. 機械の据え付け

4

 ・ 据え付け後にバッテリーを装着すると、本機が傾斜します。先にバッテリーを装着した 後、据え付け作業を行ってください。

7.1 求心作業

▶ 手 順 求心望遠鏡を使った求心作業

1. 三脚を据え付ける

脚をほぼ等間隔に開き、脚頭をほぼ水平にしま す。 脚頭の中心が、測点上に来るように設置しま す。 石突きを踏んで、脚をしっかり地面に固定しま す。

2. 本機を三脚に載せる

本機を脚頭上に載せます。 片手で本機を支え、本機の底板にある雌ねじに 三脚の定心かんをねじ込んで固定します。

 測点にピントを合わせる まず求心望遠鏡をのぞき、求心望遠鏡接眼レン ズつまみを回して焦点板の二重丸にピントを合 わせます。 次に求心望遠鏡合焦つまみを回して測点にピン トを合わせます。

▶ 手 順 レーザー求心機能を使った求心作業(オプション)

- 1. 三脚を据え付け、本機を三脚に載せる CF「7.1 求心作業」
- 2. 電源を ON にする

ごう「8. 電源 ON/OFF」
 <チルト>に電子気泡管が表示されます。

3. レーザー求心光を ON にする 【L-ON】を押すと、測点に向かって、底板か らレーザー光が射出されます。

 レーザー求心光の輝度を調整する
 2ページ目にある【-】【+】を押して、輝度 を調整します。

- 5. レーザー光を測点の中心に合わせる
- レーザー求心光を OFF にする
 <チルト>から別の画面へ移動すると、レー ザー求心光は自動的に OFF になります。

備考

・ 直射日光があたってレーザースポット光が見えにくい場合は、スポット光付近の日差しを さえぎってご使用ください。

7.2 整準作業

▶ 手 順

- 1. 測点を求心望遠鏡の二重丸の中央に入れる 整準ねじを使って測点を求心望遠鏡の二重丸 の中央に入れます。
- 2. 円形気泡管の気泡を中央に入れる 円形気泡管の気泡の寄っている方向に最も近い 三脚の脚を縮めるか、または最も遠い脚を伸ば して気泡管を中央に寄せ、さらに他の1本の脚 の伸縮によって気泡を中央に入れます。 気泡管を見ながら整準ねじを使って本機を整準 します。

電源をONにする
 『ア「8.電源 ON/OFF」
 <チルト>に電子気泡管が表示されます。
 「●」は電子気泡管の気泡を示しています。内側の円は±1.5′、外側の円は±6′のラインです。

- 4. 「●」を中央に入れる
 - ・気泡が中央にある場合には、手順7に進み ます。

5. 望遠鏡を整準ねじA、Bと平行にする

- 6. 傾斜角を0°にする X 方向は整準ねじA、Bを、Y 方向は、整準 ねじCを使って傾斜角を0°にします。
- 7. 再び測点を求心望遠鏡の二重丸の中心に入 れる

(整準台:着脱式) 定心かんを少しゆるめ、求心望遠鏡をのぞき ながら脚頭上で本機を移動させて測点を二重 丸の中央に入れます。 定心かんをしっかり締めます。

レーザー求心機能を使って求心作業をした場 合は、もう一度レーザー求心光を射出して確 認してください。

『了「7.1 手順 レーザー求心機能を使った求 心作業(オプション)」

8. 電子気泡管の気泡が中央にあることを確認する

気泡が中央にない場合には、手順 6 に戻りま す。

画面での整準作業を終了する
 (ESC)を押すと元の画面に戻ります。

- 4
- バッテリーを装着していても電源を ON にできなかったり、電源を ON にしてもすぐに OFF になってしまう場合は、バッテリー残量がないことが原因と考えられます。すぐに 充電されたバッテリーと交換してください。

 「了「20. 警告・エラーメッセージ」

▶ 電源 ON

1. 電源を ON にする

(①) を押して電源を ON に します。
 電源が入ると、数秒後に<チルト>が表示されます。
 「了「7.2 整準作業」手順3
 (ESC)を押すと観測モードになります。

「チルトオーバー」が表示された場合は、本機 が、傾斜角補正範囲を越えて傾いています。も う一度、円形気泡管を使い整準を行ってくださ い。 その後、再度<チルト>を表示させてください。 <チルト>を表示させるには、ステータスバー かスターキーモードの傾斜角自動補正アイコン して、「チルト画面へ」を選択し ます。

「5.4 スターキーモード」(5) 傾斜角自動補 正アイコン

備考

振動、風などで表示が安定しないときは、<観測条件設定>の「傾斜角補正」の設定を「なし」に変更できます。
 「ア「19.1 観測条件」

解し レジューム機能

本機にはレジューム機能があります。「レジューム」とは、中断の後で戻る、あるいは 再開するという意味です。電源 ON 後、前回電源を切ったときの画面が表示されます。 また、各種設定の内容も保存されます。また、バッテリーがなくなるとレジューム機能 は解除され、リセットされた状態になります。 バッテリーがなくなっても約1分間はレジューム機能は保持されます。すぐに充電され たバッテリーと交換してください。

▶ 電源 OFF

1. (①) を長押し(約1秒) する

4

- ・バッテリーが交換時期になると、ステータス バーのバッテリーアイコンが点滅表示されま す。そのときは、できるだけ速やかに作業を 中止し、電源を OFF にして、バッテリーを充 電してください。
- ・節電のため一定時間操作をしないと、自動的に電源が OFF になります。<器械設定>の「オートパワーオフ」で時間の設定ができます。
 「了「19.2 器械設定」

8.1 タッチパネルの調整

はじめてお使いになるときやイニシャライズ処理 が行われた後には、起動画面の次に右図のような タッチパネルの調整画面が表示されます。

画面の指示にしたがって、ターゲット(画面の十字)の中心をタップします。5回タップすることで調整できます。

備考

 通常お使いのときに、タッチパネルの調整を する場合は、<器械設定>で【タッチパネル】
 を選択して調整することができます。
 「了「19.2 器械設定」

8.2 ソフトウェア上の障害が発生したら

観測データや画面の動きに異常が認められた場合は、リセット処理を行います。リセット処 理をして、それでも機能が回復しない場合には、イニシャライズ処理をします。リセット処 理をするとレジュームが破棄されます。リセット処理をしてもプログラム モードのデータは 保持されますが、できるだけリセット処理をする前にデータをコンピューターに転送してく ださい。

▶ 手 順 リセット処理

- 1. 電源を OFF にする
- (ENT)を押しながら(①)を押します。
 リセット処理が行われ、その後は通常の電源 ON と同じです。
- 解 説 イニシャライズ処理

リセット処理を行っても正常な状態に復帰しない場合は、イニシャライズ処理を行いま す。イニシャライズ処理を行うと、各種設定は工場出荷時の設定に戻ります。イニシャ ライズ処理をしてもプログラム モードの現場データは保持されますが、できるだけイ ニシャライズ処理をする前にデータをコンピューターに転送してください。

イニシャライズ処理の手順は、〔※〕、〔S.P.〕を同時に押しながら、〔①〕を押します。 イニシャライズ処理が行われ、その後は通常の電源 ON と同じです。 **〔〕**「19.11 設定のデフォルト復帰」

解 説 記 電源を OFF にできないとき

> 電源を OFF にできないときは、リセットボタンをスタイラス(ペン)で押して電源を OFF にします。

- 4
- リセットボタンを押すと、ファイルやフォルダーが壊れることがありますのでご注意 ください。

8.3 外部機器からの電源 ON / OFF

パソコンやデータコレクターなどの外部機器と接続しているとき、外部機器側から本機の電源を ON/OFF することができます。

4

パスワードの設定をしていると、外部機器からの電源 ON 後にパスワードの入力が必要です。

□字外部機器からの電源 ON/OFF コマンドの有効/無効の設定:「19.2 器械設定」、 パスワードの設定:「19.9 パスワード」

9. 外部機器との接続

本機は、*Bluetooth* 無線通信と RS232C 通信に対応しており、データコレクターなどと接続 することができます。また、USB メモリーと USB 接続にも対応し、データの入出力などが 行えます。それぞれの機器の取扱説明書も併せてご覧ください。

4

・ Bluetooth 通信をする場合は、「4.3 Bluetooth 無線技術について」もご覧ください。

9.1 Bluetooth 通信の設定

本機は Bluetooth 無線技術により、データコレクターとワイヤレスで通信することができます。

解し 接続モード

本機と外部機器を Bluetooth 通信するには「マスター」・「スレーブ」の関係を設定します。接続を本機から行う場合は「マスター」、外部機器から行う場合は「スレーブ」を選択します。データコレクターと組み合わせて測定やデータの記録を行う場合は、本機を「スレーブ」に設定します。工場出荷時の設定では、「スレーブ」しか選択できません。

▶ 手 順 接続モードを「スレーブ」に設定する

 Bluetooth通信を選択する 設定モードの「通信」を選択して、「通信条 件」タブで通信条件の設定をします。

「通信モード」は「*Bluetooth*」を選択しま す。

4

- *Bluetooth*通信中に通信条件の設定を変更 すると、通信は切断されます。
- <通信設定>では、ステータスバーのアイ コン(
)はタップできません。
- ・当社が推奨しているプログラムが搭載されているデータコレクターと Bluetooth 通信する場合には、(2)~(7)の項目は工場出荷時の設定のまま使用できます。接続ができない場合は、データコレクターと本機の通信条件を確認してください。
- ・(4) ~(7)はGTSコマンドを使用する機 器を接続するときに設定します。

● 設定項目と各選択肢

(*:工場出荷時の設定)

- 通信モード RS232C * / Bluetooth
- (2) チェックサム あり/なし*
- (3) コントローラーリモート/2WAY/全て*
- (4) 出力タイプ
 REC-A * (測定をし直して出力) /
 REC-B (表示中データを出力)
- (5) デリミター
 ETX * / ETX+CR / ETX+CR+LF
 データの最後にキャリッジリターン
 (CR) やラインフィード (LF) を付加す
 るかどうかを設定します。
- (6) トラックステートOn(追尾情報付加) / Off *
- (7) ACK モード On */Off

通信設定			×
通信条件 RS2	32C Bluetoot	h	-77
通信モード	Bluetooth		0
チェックサム	なし	•	
コントローラー	全て	•	<u>.</u>
出力タイプ	REC-A	•	à
デリミタ	ETX	-	_1
トラックステート	Off	-	9
ACKE-ŀ	On	•	
		OK	

2. 接続モードを設定する

「*Bluetooth*」タブを選択して「モード」が 「スレーブ」になっていることを確認します。

備考

・工場出荷時の設定では、「スレーブ」しか選 択できません。

通信設定				×
通信条件	RS232C	Bluetoot	h	
£−⊦°	スレーフ *		•	0 0
接続先			•	$\mathbf{\bullet}$
認証	なし		-	1.
パスキー				à
				-1
				. 🖻
情報		接続先	OK	

3. 認証のあり/なしを選択する

認証を「あり」にすると、通信する機器間で パスキーの入力が必要になります。

 認証を「あり」にした場合はパスキーを入 力する

通信する機器のパスキーを入力します。認証 を「なし」に選択した場合でも、通信する機 器で認証設定されているときは「パスキー」 の設定が必要です。

・数字 16 桁まで入力できます。入力すると「***・・」と表示されます。工場出荷時は「0123」に設定されています。

設定を終了する

【OK】を押して、設定を終了します。 続けて *Bluetooth* 通信を行います。 **〔〕**「9.2 本機と Bluetooth 機器との通信」

▶ 手 順 接続モードを「マスター」に設定する

備考

- 接続モード「マスター」を利用するためには、通信する機器の登録が必要です。接続先の 登録が完了している場合は手順6に進んでください。
- 接続先として登録する Bluetooth 機器の 電源を ON にする
- Bluetooth通信を選択する
 「子順 接続モードを「スレーブ」に設定する」手順1

0

● ● ↓ ↓ ↓ ↓

P1

• 📈

OK

登録機器の一覧を表示する
 「Bluetooth」タブの【接続先】を押します。
 登録機器の一覧が表示されます(工場出荷時は何も登録されていません)。

アドレス

シリアルタイヤルアップ

サーチ 新規

デバイス名

4

4. Bluetooth 機器を探す

「シリアル」タブで【サーチ】を押して本機の 周りにある、通信ができる状態の *Bluetooth* 対応機器を探します。

サーチが完了するとデバイス名と *Bluetooth* アドレスがリストに表示されます。機器をリ ストから選択して【OK】を押すと、接続デバ イスリストに追加表示されます。

備考

・登録できる機器の数は6つまでです。

 ・手動で機器を登録する場合は、【新規】を押します。<新規デバイス>で登録デバイス 名と Bluetooth アドレスを入力します。
 Bluetooth アドレスは0~9とA~Fの組み合わせの12桁で入力します。(「:」は入力しません)

L					_
_					
Ŧ	デバイスサ	-#		×	×
	デバイス	名	アドレ	λ	
	PCA11	1	00:0)2:c7:3	••••••••••••••••••••••••••••••••••••••
					•
					<u></u>
				_ _	È,
	サーチ完	7			
		OK	キャンセル	-	D1

削除

- ・【削除】を押すと、選択されているデバイス 名が削除されます。削除すると元に戻せま せん。
- ・接続する機器を選択してソフトキー2ページ目の【編集】を押すと<デバイス編集>が表示され、編集することができます。
- 5. 登録を終了する

<接続デバイス>で【OK】を押して、登録を 終了します。

6. 接続モードを設定する

「*Bluetooth*」タブを選択して「モード」を 「マスター」に設定します。

通信設定				×
通信条件	RS232C	Bluetoot	h	4772
€−ŀĭ	२८९-		•	0
接続先	PCA111		•	
認証	なし		•	1
パスキー 「				à
				_1
情報		接続先	OK	

7. 接続先を設定する 本機にあらかじめ登録した、通信する機器を 選択します。

8. 認証のあり/なしを選択する ご了「手順 接続モードを「スレーブ」に設

定する」手順 3 ~ 4

設定を終了する

【OK】を押して、設定を終了します。 続けて *Bluetooth* 通信を行います。 **〔〕**「9.2 本機と Bluetooth 機器との通信」

▶ 手 順 本機の Bluetooth 情報を表示する

- 1. Bluetooth 通信を選択する
- 「Bluetooth」タブの【情報】を押す 本機の Bluetooth の情報が表示されます。 ここに表示される「アドレス」は、接続する マスター側の機器に登録してください。

ì	画信設定			×
ſ	通信条件 RS	2320 Bluetooth	L_	•77
ŕ	Bluetoothデバ	伝情報	×	0 🕛
	Bluetooth ID	B018459,B016	5540	۲
	アドレス	00:01:02:3a:4	la:5a	
				11
				h l
Ľ				1 💌 🛛
	情報	接続先	OK	

説① *Bluetooth*アドレス

Bluetooth機器固有の番号です。Bluetooth機器を識別するために使用します。この番号は、0~9までの数字とA~Fまでのアルファベットで構成された12桁の文字列です。機器によっては、デバイスアドレスと表記されている場合があります。

9.2 本機と Bluetooth 機器との通信

4

- ・ Bluetooth 通信中は、通常の使用時よりもバッテリーを消耗します。
- 通信をする Bluetooth 機器(データコレクターなど)の電源を入れて、通信設定が行われていることを確認してください。
- イニシャライズ処理をすると、接続設定などが工場出荷時の状態に戻ります。もう一度接続設定をしてください。
 「了 9 1 Bluetooth 通信の設定」
- データコレクターと組み合わせて測定やデータの記録を行う場合は、本機を「スレーブ」 に設定して通信します。「スレーブ」の場合は、「マスター」に設定されている Bluetooth機器からのみ、接続と切断ができます。

▶ 手 順 接続モード「スレーブ」で Bluetooth 通信

 本機で、通信に必要な設定をする
 『? 「9.1 Bluetooth 通信の設定「手順 接続 モードを「スレーブ」に設定する」」

2. 通信を始める

データコレクターから Bluetooth 接続をします。
 データコレクターに搭載されているソフトウェアの取扱説明書
 接続が確立すると、ステータスバーの表示がになります。

3. 通信を終了する

データコレクターから接続を終了します。

▶ 手 順 接続モード「マスター」で Bluetooth 通信

モードを「マスター」に設定する」」

2. 通信を始める

本機の接続モードが「マスター」の場合は、 観測モードソフトキー4ページ目に【接続】 が割り付けられます。【接続】を押すと、接続 先に設定された Bluetooth 機器を探して接続 します。接続が確立すると、ステータスバー の表示が になります。 ステータスバーまたはスターキーモードの をタップしても接続を開始します。 【『通信中の状態:「5.4 スターキーモード」

3. 通信を終了する

ソフトキー4ページ目の【切断】を押して、 接続を終了します。 ステータスバーの 4 をタップしても接続を 終了します。

9.3 通信ケーブル (RS232C) による接続

本機とデータコレクターを接続し、RS232C通信を行えます。

▶ 手順通信ケーブルの基本設定

- 本機の電源を OFF にして、本機とデータ コレクターをインターフェースケーブルで 接続する CF 接続ケーブル:「24.特別付属品」
- 2. RS232C 通信を選択する 設定モードの「通信」を選択します。「通信条 件」タブで通信条件の設定をします。「通信 モード」は「RS232C」を選択します。

RS232Cの通信設定をする
 「RS232C」タブで、通信条件に合わせて、各項目を設定します。*は工場出荷時の設定です。

● 設定項目と各選択肢 (*:工場出荷時の設定)

- (1)通信速度(ボーレート)
 1200 / 2400 / 4800 / 9600 * /
 19200 / 38400bps
- (2) データ長7 / 8 * ビット
- (3) パリティー なし*/奇数/偶数
 (4) ストップビット長
 - 1*/2ビット

4. 設定を終了する

【OK】を押して、設定を終了します。

通信設定				×
通信条件	RS232C	Bluetoot	h	
ボーレート		9600bps		0
データ長	1	3ビット		•
パリティー	t	 ລຸບ		
ストップビット	6	 しビット		1
				_1
				P
			OK	

9.4 USB ケーブルによる接続

USB ポート 2 を使用し、本機をコンピューターなどと接続することができます。接続方法 は、USB モードと Mobile モードがあります。

解 し USB ポート

本機には接続する機器によって2種類の USB ポートがあります。

ポート名	対応する機器
USB ポート 1	USB メモリー
USB ポート2(mini-B)	コンピューターなど

4

- ・ 弊社は、すべての USB 機器との対応を保証するものではありません。
- ・ 対応するコンピューターは、Windows XP/Vista/7 で、USB 接続が可能なものです。
- USB ポート 2 から USB ケーブルをはずす場合は、ケーブルの破損防止のため、ゆっくりはずしてください。

備考

exFat ファイルシステムドライバー /ActiveSync/ Windows Mobile デバイス センターのダウンロード・インストール方法は Microsoft のサポートサイトを参照してください。

▶ 手 順 本機とコンピューターを USB モードで接続する

Windows XP 搭載コンピューターと接続する場合は exFat ファイルシステムドライバーをインストール必要があります。

 外部メモリーハッチのボタンをスライドさ せて、ハッチを開く

 本機の電源を OFF にして、本機とコン ピューターを USB ケーブルで接続する USB ポート 2 に接続します。

備考

- ・コンピューターは電源が ON の状態でかま いません。
- 3. 本機の電源を ON にする

(ENT)を押しながら(①)を押します。画面にUSBモードの起動を確認するメッセージボックスが表示されます。【はい】をタップしてください。本体表示部に、しばらくしてくUSB Mode > と表示されます。

	X
😲 USB ma	ide?
(はい(Y)	いいえ(<u>N</u>)

備考

本機のコンピューター上の表示は Windows の設定により<リムーバブルディスク>でな い場合があります。

4

本機が正しく動作しなくなるおそれがありま すので、以下のことをお守りください。

- ・PC 上の<リムーバブルディスク>内に元々 設定してあるフォルダーは、階層や名称の変 更をしないでください。
- ・PC 上の<リムーバブルディスク>をフォー マットしないでください。

4. USB 接続を終了する

コンピューターのタスクバーの<ハードウェ アの安全な取り外し>

を実行し、USB
ケーブルをコンピューターと本機から取りはずします。

5. 本機の電源を OFF にする

〔①〕を長押しします。

▶ 手順 本機とコンピューターを Mobile モードで接続する

接続するコンピューターに応じて同期ソフトをインストールする必要があります。

ポート名	対応する機器		
Windows XP	ActiveSync		
Windows vista/7	Windows Mobile デバイス センター		

- 外部メモリーハッチのボタンを押し上げて ハッチを開く
- 本機の電源を OFF にして、本機とコン ピューターを USB ケーブルで接続する USB ポート 2 に接続します。

備考

 ・コンピューターは電源が ON の状態でかま いません。

3. 本機の電源を ON にする

(ENT)を押しながら(①)を押します。画面にUSBモードの起動を確認するメッセージボックスが表示されます。【いいえ】をタップしてください。 コンピューターの同期ソフトが有効になります。

備考

 本機のコンピューター上の表示は Windows の設定により<リムーバブルディスク>で ない場合があります。

4

本機が正しく動作しなくなるおそれがありま すので、以下のことをお守りください。

- ・PC 上の<リムーバブルディスク>内に元々 設定してあるフォルダーは、階層や名称の 変更をしないでください。
- ・PC 上のリムーバブルディスクをフォーマッ トしないでください。

 同期ソフトのパートナーシップの設定を行う
 同期ソフトのパートナーシップの設定画面が コンピュータートに表示された場合は、「パー

トナーシップの設定」で【いいえ】を選択し てください。

備考

 ・同期ソフトの動作設定によって、パート ナーシップの設定画面は表示されないこと があります。

5. Mobile 接続を終了する

本機とコンピューターの接続ケーブルをはず します。

9.5 USB メモリーの装着

プログラムモードに搭載の特定のプログラムをお使いの場合は、USB メモリーを装着して データの保存やインポートが行えます。

🕼 USB ポートについて:「9.4 USB ケーブルによる接続 🛛 🕅 USB ポート」

4

データの読み書き時に USB メモリーを取りはずさないでください。

▶手順

- 外部メモリーハッチを開く
 『ア 9.4 USB ケーブルによる接続」
- 2. USB ポート1に USB メモリーを挿入する

4

- ・4本の金属端子が見えるタイプの USB メモ リーを使用する場合は、USB ポートの破損 防止のため、端子面が裏側になる位置で挿 入してください。
- 3. 外部メモリーハッチを閉める 「カチッ」と音がするのを確認してください。
- データの保存やインポートを行う
 企デ 各種プログラムのプログラム解説書

10. ターゲットの視準

本機での視準方法には、自動視準と目視による視準があります。 自動視準とは、望遠鏡がターゲットまで自動的に回転して視 準を完了する機能です。 ターゲット(プリズムまたは反射シート)から戻ってきた

レーザー光をイメージセンサーで受け、ターゲットと望遠鏡 十字線の中心とのずれ量を画像処理計算で求め、エンコー ダーから求めた測角値を補正します。自動視準では、望遠鏡 の十字線とターゲットが一致していないこともあります。

⚠ 注意

ターゲットを視準するまでは、本機からレーザー光が射出されています。

4

- ターゲットがプリズムや反射シートのときのみ自動視準できます。ノンプリズムで測定する場合は、目視による視準をしてください。
- 測定精度を確保するために、指定されたプリズム・反射シートをお使いください。また、
 使用するターゲットタイプとその直径またはシートサイズを、< EDM 設定>で正しく設定してください。
- 🕼 「 19.3 EDM 設定」、「23. プリズムシステム」
- ・ 天頂付近にターゲットがあるときはハンドルを取りはずしてください。
 □ 「「4.1 各部の名称 トハンドルの取りはずし/取り付け」
- 天頂付近にターゲットがあるときは自動視準では時間がかかることがあります。特別付属品のダイアゴナルアイピース(DE27)目視による視準をしてください。
 「デ「10.3 目視によるターゲット視準」
- サーチ範囲内に複数のターゲットがあると、誤動作したり、ターゲットとして見つけられないことがあります。
- ・ ガラス越しのターゲットは、自動視準できません。測定誤差が生じます。
- 本機とターゲットの間に障害物があってターゲットが断続的に遮られる場合は、正しく自動視準できないことがあります。
- ターゲット方向に強い光源や太陽光の反射がある場合は、正しい測定ができないことがあります。
- ・ 傾きによる誤差を抑えるため、どのターゲットもできるだけ本機に向かって正対させてく
 ださい。

【**『**360°プリズムの正対位置:「26.1 360°プリズムを使った高精度な視準方法」

反射シートを使った自動視準では、次の表をめやすに、測定距離に応じた大きさの反射シートをお使いください。

測定距離	反射シートの大きさ		
$5 \sim 15 \mathrm{m}$	RS10 (10mm)		
$5\sim 30 \mathrm{m}$	RS30 (30mm)		
$5\sim40m$	RS50 (50mm)		
10~50m	RS90 (90mm)		

10.1 自動視準の設定

▶ 手 順

自動視準を選択する

設定モードの「モーター」を選択して、「設 定」タブで自動視準の設定をします。「自動視 準設定」は、「自動視準」を選択してくださ い。

●設定項目と各選択肢

(*:工場出荷時の設定)

- (1) 自動視準
 (1) 前動視準
 (1) 新密/高速*
- (2) 自動視準設定なし/自動視準*
- (3) 旋回 🛍 5" / 10" * / 20" / 30" / 60"

モーター設定				×
設定サーチ範囲	目 シ	すご設定		
自動視準]	高速	•	0
自動視準設定	ĺ	自動視準	-	e
旋回	j	10"	-	
				1
				1
			OK	

解 自動視準(自動視準精度)

所定の自動視準完了基準内(「精密」と「高速」で異なります)にターゲットが入った 時点で、機械内部でデータの取得を始め(「精密」と「高速」で平均データ量が異なり ます)、計算処理を行って自動視準を完了します。

「精密」は、三脚などでしっかり固定したターゲットを精密に自動視準する場合に設定 します。「高速」は、ターゲットのポールを手で支えて測定するような場合に設定しま す。

「精密」設定の場合、本機はまずターゲットの位置が安定していることを確認してから ターゲットの方向を求めます。次にターゲットが視野の中心付近にあることを確認して から自動視準を完了します。このため、高い自動視準精度が得られる反面、ターゲット のポールを手で支えて測定するような状況では、手ぶれが原因で自動視準に時間がか かったり、「タイムアウト」のメッセージが出てしまいます。

一方「高速」設定では、ターゲットの位置が多少不安定であったり、ターゲットの位置 が視野の中心から多少離れていても、その位置で得られたデータを元にターゲットの方 向を求めます。このため、短時間で自動視準を完了することができます。 高精度な測定をする場合は、「精密」設定をおすすめします。

解〕 旋回(旋回精度)

モーター旋回時、指示した角度からのずれの許容値を設定することができます。「旋回」 を 30" に設定した場合、【旋回】・【H 旋回】・【反転】などを押したときは、指定角に対 して± 30" の範囲で旋回が停止します。

解し 自動視準時のサーチ動作

自動視準は、所定の自動視準完了基準内(「自動視準(自動視準精度)」と「測定精度」 の設定)にターゲットが入った時点で、機械本体はそれ以上動かずに、ターゲットと望 遠鏡十字線の中心とのずれ量を画像処理計算で求め、エンコーダーから求めた測角値を 補正します。自動視準はこのような補正処理を行うため、短い測定時間で高精度の視準 が可能です。望遠鏡の十字線とターゲットの中心が一致していないこともありますが、 実際は中心の測角値を表示しています。補正された測定値は青色で表示されます。 補正された測定値が表示されている状態で、機械本体を手動やジョグで約 20"以上動か すと、画像処理計算による補正を中止して、従来のエンコーダーから求めた測角値にな り、測定値は黒色表示に戻ります。また、電源を OFF にしたときも補正は解除されま す。

2. サーチ範囲を設定する

「サーチ範囲」タブでターゲットを探す範囲を 設定します。 角度設定は 1°ごとの設定になります。端数 は切り捨てられます。

●設定項目と各選択肢

(*:工場出荷時の設定)

- (1) 鉛直角範囲
 0~90°(15*)
- (2)水平角範囲0~180°(15*)

3. ジョグによる回転速度を設定する

ジョグを回したときの水平角・鉛直角の回転 速度を設定します。「切替」で設定した段階を 境に低速回転から高速回転に切り替わります。 「切替」の段階が大きいほど高速回転に切り替 えるにはジョグを早く回す必要があります。

●設定項目と各選択肢

(*:工場出荷時の設定)

- (1) 低速 1~4(3*)(段階。「4」が最速)
 (2) 高速 1~7(4*)(段階。「7」が最速)
- (3) 切替

 1~6(2*)(段階)
 【初期化】を押すと、「ジョグ設定」タブの項目のみ、工場出荷時の設定に戻ります。
- 4. 設定を終了する

【OK】を押して、設定を終了します。

10.2 視準機能を使った視準

▶ 手 順

- ターゲットの方向に本機を向ける 照準器を使っておおまかに本体上部と望遠鏡 をターゲットの方向に向けます。水平ジョ グ・鉛直ジョグを使うと微調整ができます。
 ジョグ設定タブ:「10.1 自動視準の設定 1手順 3
- 2. ターゲットのサーチをする

各測定画面で【サーチ】を押すと、本体上部 と望遠鏡が回転し、ターゲットのサーチが始 まり、ターゲットを視準して止まります。 「」「【サーチ】の割り付け:「19.6 ソフト キーのユーザー割り付け」

10.3 目視によるターゲット視準

¥

ターゲットを視準したときに対物レンズから太陽光などの強い光が入射すると、機械の誤 動作の原因になることがあります。付属のレンズフードを取り付けてください。

▶ 手 順

 望遠鏡十字線にピントを合わせる 望遠鏡を明るく特徴のない背景に向けます。 望遠鏡接眼レンズをのぞき、接眼レンズを右 回転でいっぱいまで回し、次に徐々に左に回 して、十字線がぼける寸前で止めます。 こうすると、目に負担の少ない状態となり、 頻繁に再調整する必要がありません。

2. ターゲットを視準する

照準器を使ってターゲットを視野に入れます。 水平ジョグ・鉛直ジョグを使うと微調整がで きます。

- 3. ターゲットにピントを合わせ、さらに望遠 鏡十字線の中心とターゲットを合わせる 合焦つまみで目標物にピントを合わせます。 目標物の中心と十字線を正確に合わせます。
- 視差がなくなるまでピントを合わせる
 目標像と十字線の間に視差がなくなるまで、
 合焦つまみでピントを合わせます。

##10 視差をなくす

望遠鏡をのぞきながら、頭を軽く上下左右に振っても目標像と望遠鏡十字線が相対的に ずれないようにピントを合わせると、「視差をなくす」ことができます。視差がある状 態で観測を行うと、測定値に大きな誤差を生じます。必ず視差をなくす作業を行ってく ださい。

|解 説── 目視によるターゲット視準

目視によるターゲット視準をする場合は、<モーター設定>「設定」タブの「自動視準 設定」を「なし」にして、照準器を使ってターゲットを視野に入れます。水平ジョグ、 鉛直ジョグを使って微調整をして、ターゲットを正確に視準します。 微調整時は、ジョグ設定を遅いスピードにするよう、おすすめします。

11.角度測定

ここでは、観測モードでの基本的な角度測定の手順を説明します。

ソフトキーの割り付けを作業用途や作業者の使い勝手に合わせて変更できます。

 「了「19.6 ソフトキーのユーザー割り付け」

11.1 2点間の夾角測定(水平角0°設定)

2 点間の夾角を測るには、「水平角の 0°設定」の機能を用います。

▶ 手 順

 1.1点目のターゲットの方向に機械を向け、 ターゲットを視準する
 ごデ「10.ターゲットの視準」

2. 1 点目を水平角 0°に設定する 観測モードのソフトキー 1ページ目の【0 セット】を1回押すと、【0セット】が点滅し ます。続いてもう一度押すと、1点目の水平 角が 0°に設定されます。

3.2点目を視準する

画面に表示されている「水平角」が、2 点間 の夾角です。

11.2 決まった角度からの測定(水平角の任意角度設定)

ある方向の水平角に任意の角度を設定し、その方向からの角度を測定することができます。

▶ 手 順

- 1.1点目を視準する
- 任意角度設定メニューに入る 観測モードのソフトキー2ページ目で【任意 角】を押します。<任意角設定>が表示され ます。
- 3. 1 点目を任意の角度に設定する 設定したい角度を「角度入力」タブの水平角 に入力します。
 - ・座標入力、方向角入力でも設定できます。 『
 了「13.2 方向角の設定」

現在の角度

任意角設定				×
角度入力	座標入ナ	」 方向角.	入力	-772
水平角		17	•14'00"	⊨ 🖶 🚭 🧧
設定したい角度を入力してください				
水平角		12	3.4500	_1 ₽
	サーチ		OK	

4. 入力値を確定する

【OK】を押すと、水平角に設定した値が表示 されます。

5.2点目を視準する

設定した値からの水平角が表示されます。

備考

 ・ 観測モードで【ホールド】を押して、水平角表示をホールドする方法でも、水平角を任意 角度に設定することができます。
 『「ア【ホールド】の割り付け:「19.6 ソフトキーのユーザー割り付け」

11.3 基準の角度から決まった角度まで回転する

基準の方向から指定した角度(目標点)まで、本機を自動的に回転させます。

・ 目標点の座標で指定することもできます。

4

<観測条件設定>で「傾斜角補正」または「コリメーション補正」の設定が「あり」になっている場合、天頂、天底付近の角度を指定すると正しく回転できないことがあります。

▶手順

- 角度の基準となる点を視準し、基準として 設定する
 基準の点を視準して0セットするか、基準の 点の角度を入力します。
 「11.12点間の夾角測定(水平角0°設 定)」/「11.2決まった角度からの測定 (水平角の任意角度設定)」
- 2. 指定する角度を入力する

ソフトキー1ページ目の【モーター】を押し ます。指定角旋回に鉛直角と水平角を入力し ます。

₶₽₽₽				×
指定角回転	-			477
鉛直角		9	0.0000	0 () ()
水平角		C)°00'00"	
				<u></u>
鉛直角		86	14'20"	.
水平角		332	*28'00"	_1 ☑
サーチ			旋回	P1

・器械点と目標点の座標を設定して目標点の 角度を求めることができます。ソフトキー2 ページ目の【座標】を押して<目標座標入 カ>に器械点を設定します。【OK】を押す と座標から角度が計算されます。
入力値を確定し、指定の角度まで本機を回 転させる

【旋回】を押すと、手順3で指定した点(目 標点)の方向まで本機が回転します。

・ソフトキー2ページ目で次の操作ができます。

【座標】: 指定角を座標入力から設定しま す。

【反転】 : 本機と望遠鏡部を反転します。

【設定】 : モーター駆動の設定をします。

[こう 10.1 自動視準の設定」

解 定速旋回

観測モードにソフトキー【定速旋回】を割り付けて、この機能を利用すると本機の水平 角と望遠鏡部を一定のスピードで回転させることもできます。

回転させるには、回転させたい方向をタップするか〔◀〕/〔▶〕/〔▲〕/〔▼〕を 押します。スピードは1~16から選択できます。

回転を停止するには中央の赤丸かステータスバーの 🔩 をタップするか、(ESC)を押します。

11.4 測角してデータを出力

測角を行ったときにその場で測定結果をホストコンピューターなどの外部機器に出力する機 能です。

「9. 外部機器との接続」、接続するケーブルの種類:「24. 特別付属品」、制御コマンドや 通信フォーマットの詳細:「コミュニケーションマニュアル」

▶手順

- 1. 本機と外部機器を接続する
- 観測モードにソフトキー【HV アウトー T】 または【HV アウトー S】を割り付ける 「了「19.6 ソフトキーのユーザー割り付け」

備考

・ソフトキーを押すと以下のフォーマットで 出力されます。 【HV アウトー T】:GTS フォーマット 【HV アウトー S】:SET フォーマット

目標点を視準する

4. 測角データを出力する

観測モードで【HV アウトー T】または【HV アウトー S】を押すと、測定データが外部機 器に出力されます。

12. 距離測定

観測モードでの距離測定の準備として、必要に応じて次の項目の設定を行ってください。

- ・ 距離測定モード
- ・ ターゲットタイプ
- プリズム定数補正値
- ・ プリズム直径
- ppm(気象補正係数)
- ・ サーチ範囲
- ・ 自動視準

【ご「10.1 自動視準の設定」、「19.3 EDM 設定」

ソフトキーの割り付けを作業用途や作業者の使い勝手に合わせて変更できます。

 「了「19.6 ソフトキーのユーザー割り付け」

\land 注意

 レーザー照準を使った場合は、測距後必ずレーザー射出を OFF にしてください。測距が 停止してもレーザー照準のレーザー光は OFF になりません。

4

- ターゲットタイプはお使いになるターゲットに合わせて必ず正しく設定してください。本 機ではターゲットタイプの設定によって距離測定の表示範囲を切り替えたり距離計の光量 状態を調整するため、測定するターゲットと設定が合っていないと正しい測定結果が得ら れないことがあります。
- 対物レンズが汚れていると正しい測定結果が得られないことがあります。付属のレンズ刷 毛を使って細かな塵を払ってから、レンズに息を吹きかけて曇らせ、付属のワイピングク ロスで軽くふいてください。
- ノンプリズム測定で、測距光を遮るものがある場合や測定対象物の後方に反射率の高いもの(金属面や白っぽいもの)がある場合、測定結果が正しくないことがあります。
- かげろうがある場所での距離測定では、測定結果にばらつきが生じることがあります。複数回測定し、その結果を平均した値を採用されることをお奨めします。

12.1 受光光量のチェック

長距離の測定では、受光光量のチェックを行うと便利です。これは、視準したターゲットから十分反射光が返ってきているかどうかを確認するものです。

<u> /</u>注意

・ 受光光量のチェック中は、レーザーが射出されています。

4

 ・ 受光チェック後すぐに測距を開始する場合は、望遠鏡十字線がターゲットの中心と正確に 合っているかを確認してください。受光光量が十分で「●」が表示されても、ターゲット の中心と十字線がずれていると実際には正確な距離が測定されません。

▶手順

- 1. ターゲットを正確に視準する
- 2. 受光光量を表示する 観測モードの【光量】を押します。

 『ア【光量】の割り付け:「19.6 ソフトキーの ユーザー割り付け」

・【光量 ON】を押すと、受光光量がゲージで 表わされます。

を表します。が多いほど、反射光量が多いこと

「●」は、測定に十分なだけの光量があること を表します。

「●」が表示されないときは、もう一度ター ゲットを正確に視準し直してください。

- ・【ブザー】:測距が可能なときにブザーを鳴らす設定をします。ボタンを押すと ON / OFF が切り替わります。
- 【測定】:観測モードに戻ります。「自動視準設定」での設定にかかわらず、距離と角度の測定のみをします。
- 3. 受光光量のチェックを終了する
 【光量 OFF】を押すと、チェックが終了します。
 (ESC) または【×】を押すと、元の画面に戻ります。

備考

- 「●」が表示されず、かつ ふり切っている状態が続くときは、最寄りの営業担当にご連絡 ください。
- 2分間キー操作がない場合も自動的に一つ前の画面に戻ります。

12.2 測距でのガイドライトの活用

ガイドライトを「ON」に設定しておくと、ライトの色と点滅速度で本機の状態を遠くからで も知ることができます。

〔 ガイドライトの ON / OFF: 「5.1 基本のキー操作」

4

・ ガイドライトを ON に設定していても、ターゲットタイプがノンプリズム設定の測距時 と受光光量チェック時は、ガイドライト OFF になります。

● ガイドライトの状態と意味

本機の状態

ライトの状態	意味
遅い点滅(赤と緑同時)	待機中
	サーチ中
速い点滅(赤と緑同時)	測距中(連続測定時)
	受光光量チェック中
まと緯の芬万占減	測距エラー(信号なし、視準エラー)
がと縁の文互点滅	サーチエラー(エラー画面のみ)

12.3 距離と角度の同時測定

距離測定と角度測定を同時に行います。

ターゲットをサーチする範囲を設定することができます。
 「了「10.1 自動視準の設定」

▲ 注意

・ 自動視準をしている間は、本機からレーザー光が射出されています。

▶ 手 順

 プリズムの方向に本機を向ける 照準器を使って本体上部と望遠鏡をプリズム に向けます。
 「了「10. ターゲットの視準」

2. 測定を開始する

観測モードのソフトキー1ページ目で【測 定】を押すと測定が始まります。

3. 測定を終了する

【停止】を押して、測定を終了します。

備考

- ・ 単回測定の場合は、測定が1回で自動的に止まります。
- 精密平均測定では、距離データは「斜距離1、斜距離2、…斜距離9」と表示され、指定した回数の測距が終了すると「斜距離A」に距離の平均値が表示されます。
- ・ 最後に取得した測定データは、電源を OFF にするまで保持されます。【呼出】を押すとこのデータを表示させることができます。

 「了【呼出】の割り付け:「19.6 ソフトキーのユーザー割り付け」

12.4 測距してデータを出力

測距を行ったときにその場で測定結果をホストコンピューターなどの外部機器へ出力する機 能です。

「9. 外部機器との接続」、接続するケーブルの種類:「24. 特別付属品」、制御コマンドや 通信フォーマットの詳細:「コミュニケーションマニュアル」

▶ 手 順

- 1. 本機と外部機器を接続する
- 2. 目標点を視準する
- 3. 測距データを出力する

観測モードで【HVD アウトー T】または 【HVD アウトー S】を押すと、測距が始まり、 目標点の測定結果が外部機器に出力されます。 ↓ 「19.6 ソフトキーのユーザー割り付け」

出力を終了する
 【停止】を押すとデータ出力を終了し、観測

モードに戻ります。

12.5 REM 測定

REM 測定は、送電線、橋梁、吊りケーブルなどターゲットを直接設置できない点まで高さを スピーディーに測定するものです。

目標点の高さは次の式で算出されます。

- Ht = h1 + h2
- $h2 = S \sin \theta_{71} \times \cot \theta_{72} S \cos \theta_{71}$

 REM 測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに 割り付けることができます。

 「ア「19.6 ソフトキーのユーザー割り付け」

▶ 手 順

1. ターゲットを目標物の鉛直下または直上に 設置し、視準高を巻尺などで測る

【高さ】を押して視準高を入力します。

 REM 測定メニューに入る メニューモードの「REM 測定」を選択しま す。

 ターゲットを測定をする ターゲットを視準して【測定】を押します。 【停止】を押して測定を終了します。

測定した距離・鉛直角・水平角が表示されま す。

REM測定				×
REM高				•77
				0
				٩
斜距離		1.3	852 ^m	
鉛直角		83°1	3'50"	
水平角		105°5'	3'50"	8.8
		175 5.	5.50	
	高さ	測定	REM	

- REM 測定をする
 目標物を視準して、【REM】を押すと REM 測
 定が始まります。「REM 高」に地上から目標
 物までの高さが表示されます。
 【停止】を押して、測定を終了します。
 - ・ターゲットを再観測するには、ターゲット を視準して【測定】を押します。
 - REM 測定を続けるには【REM】を押します。

REM測定			×
REM高	1.0	613 ^m	•777 0 (*)
	1.8	855 ^m	
鉛直角	45°0	9'00"	
水平角	194°50	6 '40"	_1 _7
		停止	Í

備考

測定データが既にある場合は、手順2 でメニューモードで「REM 測定」を選択すると、 手順4 に進みます。REM 測定が開始していますので【停止】を押して、測定を終了しま す。 座標測定では、あらかじめ入力した器械点座標、器械高、視準高、後視点の方向角をもとに、 目標点の三次元座標を求めます。

・ 座標測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。

 「了「19.6 ソフトキーのユーザー割り付け」

13.1 器械点データ入力

ここでは、座標測定の準備として、本機を設置した測点(器械点)の座標、器械高、視準高 を設定します。

▶手順

- 器械高・視準高をあらかじめ巻き尺などで 測っておく
- 2. 座標測定メニューに入る メニューモードの「座標測定」を選択します。

ս1

7

1.000 m

OK

 3. 器械点を設定する 座標測定 × 「器械点設定」を選択します。 17 機械を設置した測点(器械点)の座標、器械 田 1.器械点設定 0 高、視準高を入力します。 Ŧ () () **d**D 2.後視設定 1 * Ŧ **1** ..1 3.座標測定 7 戻る 4. 入力値を確定する 高さ設定 × 入力後は【OK】を押します。<任意角設定> 17 器械点X 100.000 に移ります。 0 器械点Y 150.000 (() 器械点Z 200.000 14 1.500 m 🖳

器械高

視準高

13.2 方向角の設定

すでに設定した器械点座標と後視点座標をもとに、後視点の方向角が計算されます。

▶ 手 順 座標入力による設定

- 任意角度設定メニューに入る
 <座標測定>で「後視設定」を選択します。
 <任意角設定>が表示されます。
 - ・「13.1 器械点データ入力」」の手順4からも 任意角度設定メニューに入れます。
- 後視点の座標を入力する
 「座標入力」タブを選択して、後視点の座標を 入力します。
 - ・【サーチ】:自動視準を行います。後視点の 方向に本機をあらかじめ回転させておきま す。

座標測 定		×
₩ 1.器械点設定		•777 0
+		۲
III 2.後視設定		
+		.
₩ 3.座標測定		_1 ₽
	戻る	

・【測定】:後視点の距離チェックを行うときは、後視点を視準して【測定】を押します。 【停止】を押すと、計算から求められた距離、測定距離、およびその差が表示されます。確認して【はい】を押すと、方向角を設定して<座標測定-座標測定>に移ります。

3. 後視点を設定する

入力後は【OK】を押します。後視点を設定して、<座標測定>に移ります。

f	後視距離チェヮク	×	×
L	計算水平距離	13.317 m	il o 0
	測定水平距離	13.316 m	۲
	水平距離の差	0.001 m	
	後視設定しますか?		.1
	はい	いいえ	P1

▶ 手 順 角度入力による設定

- 任意角度設定メニューに入る
 <座標測定>で「後視設定」を選択します。
 <任意角設定>が表示されます。
 - ・「13. 器械点データ入力」 手順4からも任意 角度設定メニューに入れます。
- 2. 水平角を入力する

「角度入力」タブを選択して、設定したい角度 を「水平角」に入力します。

・【サーチ】:自動視準を行います。後視点の 方向に本機をあらかじめ回転させておきま す。

3. 後視点を設定する

設定後は【OK】を押します。水平角を設定し てく座標測定>に移ります。

▶ 手 順 方向角入力による設定

- 任意角度設定メニューに入る
 <座標測定>で「後視設定」を選択します。
 <任意角設定>が表示されます。
 - ・「13. 器械点データ入力」手順4からも任意 角度設定メニューに入れます。
- 2. 方向角を入力する

「方向角入力」タブを選択して、設定したい角 度を「方向角」に入力します。

- ・【サーチ】: 自動視準を行います。後視点の 方向に本機をあらかじめ回転させておきま す。
- ・【H 方向角】/【H 入力】/【H なし】/ 【H0°】:水平角の設定方法を表示します。 押すと、設定方法を切り替えます。 【了「13.2 III 水平角の設定方法」

任意角設定			×
角度入力 座標入ナ	」 方向角.	7기	477
水平角		01'20"	0 (() () ()
設定したい角度を入っ 方向角 水平角	カしてくださし 3 19!) 0.0150 5°07'30"	 @.@ 1 //
H方向角 サーチ		OK	

3. 後視点を設定する

設定後は【OK】を押します。方向角を設定し てく座標測定>に移ります。

説 水平角の設定方法

H方向角(水平角を方向角と同じ値に設定)/H入力(水平角と方向角をそれぞれ入力)/Hなし(方向角のみ設定)/H0°(水平角を0°に設定)

13.3 三次元座標測定

器械点、後視点の設定後、目標点の観測を行って目標点の座標値を求めます。

目標点の座標値は次の式で計算されます。

- X_1 座標 = $X_0 + S \times sinZ \times cosAz$
- Y_1 座標 = Y_0 + S × sinZ × sinAz
- Z_1 座標 = Z_0 + S × cosZ + ih th

X0: 器械点 X 座標 S: 斜距離 ih: 器械高 Y0: 器械点 Y 座標 Z: 天頂角 th: 視準高 Z0: 器械点 Z 座標 Az: 方向角

座標データのうち「Null」と表示されている項目は計算対象外とされます。0 とは異なります。

▶手順

- 1. 目標点のターゲットを視準する
- **2. 座標測定を開始する** メニューモードの「座標測定」で「座標測定」 を選択します。

【測定】を押すと測定を開始します。【停止】 を押して測定を終了します。目標点の座標値 が表示されます。「グラフィック」タブを選択 すると座標値がグラフィックで表示されます。

【高さ】を押すと器械点データの再設定ができます。次の目標点の視準高が異なる場合は、観測を行う前に視準高を入力しなおします。

座標測定	座標測定			×
座標測定	グラフィック			•77
x			-3.88	0
Y			11.43	۲
Z			1.65	
水平距離		1	.2.07 m	
鉛直角		82	12'27"	81
水平角		108	46'16"	
	高さ		測定	

3. 次の目標点を観測する

次の目標点を視準して【測定】を押すと測定 が開始します。続けて複数の点を測定します。

4. 座標測定を終了する

(ESC) または【×】を押すと<座標測定>に 戻ります。

14. 後方交会

既知点を複数測定することによって、器械点の座標値を算出します。

- 測定のできる既知点は、測距の場合は2点以上10点まで、測角の場合は3点以上10点までです。
- ・ 既知点の数が多いほど、また、距離を測定する点数が多いほど、得られる座標値は精度が 高いものになります。
- 後方交会メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。
 「ア「19.6 ソフトキーのユーザー割り付け」

▶ 手 順

1. 後方交会メニューに入る メニューモードで「後方交会」を選択します。

≁בגל			×
■ 1.座標測定	♥ 5.対辺	測定	•777 🕕 0
▼ 2.杭打ち	<mark>. 8</mark> 6.後方	交会	•
🔀 3.オフセット観測	📐 7.面積	計算	* ®.®
🦽 4.REM測定			_1 🔽
		戻る	

2. 既知点の設定をする

既知点1点目の座標と視準高を入力します。 1点目の設定が終わったら【後】を押して2 点目の設定に移ります。

・【前】を押すと、前の点の設定に戻ります。

すべての既知点の設定が済んだら【OK】を押 します。測定画面に移ります。

3.1 点目を測定する

1点目を視準して【測定】を押すと測定が開 始し、測定結果が表示されます。

・【測角】を押すと測距なしの測定を行いま す。

後方交会-月	既知点登録			×
既知点番	号 1		•	•772
	•			0 🕕
座標X		12	40.586	۲
座標Y		12	34.000	
座標Z		12	33.690	
視準高		(0.000 m	
				<u> </u>
	前	後	OK	

後方交会 - 既知点測定		×
既知点番号	1	-77
X	1240.586	0
Y	1234.000	۲
Z	1233.690	
		ٹا_
\$4距离推		1
鉛直角	86*14'30"	1
水平角	332*49'20"	
	測定	

- **4. 1 点目の測定結果を確定する** 【はい】を押します。
 - ・ここで視準高を入力し直すこともできます。
 - 【いいえ】を押すと、手順3の画面に戻りますので、もう一度測定します。
- 5.2 点目以降を測定する

手順3~4と同様に観測を続けます。 計算に必要な既知点の観測が終了すると、【計 算】が表示されます。

3点目以降に【自動】が表示されます。【自 動】を押すと、本機が回転して3点目以降の 点を自動観測します。

・自動観測中に【停止】を押すと、「自動測定 開始前の状態に戻しますか?」というメッ セージが表示されます。【はい】を押すと自 動観測前に戻り、手動で観測を続けること ができます。【いいえ】を押すと、現在の続 きから手動で観測をすることができます。

6. 計算結果を表示させる

【計算】を押すか、最後の既知点の観測後【は い】を押すと、器械点座標と観測の精度を示 す標準偏差(σX、σY、σZ)が表示されま す。

- ・測角のみで後方交会した場合は、器械点 Z は表示されません。
- ・自動観測の場合は、観測終了後に自動的に 表示されます。

後方交会 - 既知点測定	×
既知点番号	3 💶
X	3.852 📒 0
Y	13.827 🍊
z	1.389
斜距離 鉛直角 水平角	14.421 84•28'30" 74•26'10"
自動	測定

後方交会 - 結果			×
器械点X		-0.050	•77
器械点Y		0.070	0
器械点Z		0.002	
σΧ		0.0278	
σΥ		0.0152	
σZ		0.0030	1
	再測	OK	

- ・【再測】を押すと、既知点を1点目から再観 測したり、最終の既知点のみを再観測でき ます。
- × 後方交会 - 再測 × 0 **(**) 🖳 1.始点から再測 1.2 **.** ⇒ 2.終点のみ再測 _1 7 × 後方交会 - 方向角セット × 方向角をセットしますか? 0 (B) セット方法 水平角 = 方向角 🔻 <u>_</u>___ **M**. ..1 7 いいえ はい
- 7. 後方交会を終了する方向角を設定する 手順6の画面で【OK】を押します。求めら れた器械点に対し、1点目の既知点を後視点 として方向角を設定するときは、セット方法 を選択して【はい】を押します。メニュー モードに戻ります。
 - ・【いいえ】を押すと方向角を設定せずにメ ニューモードに戻ります。

解し水平角の設定方法

水平角=方向角/方向角のみ/水平角0°(水平角を0°に設定)

解し後方交会の計算の手順

後方交会により、本機内部では XY 座標については角度と距離の観測方程式により、最 小二乗法を用いて器械点座標を求めます。 Z 座標については、平均値を器械点座標とします。

解 説① 後方交会を行う上での注意

未知点(器械点)と3点以上の既知点とが、同一円周上に配置されると、未知点の座標 値が算出できない場合があります。

・下の図のような配置が望ましい配列です。

・下の図のような場合、正しく算出できない場合があります。

・同一円周上に並ぶ可能性がある場合は、以下の3つのうちのどれかを選んで実行してください。

①器械点をなるべく三角形の中心近くに移動する

②円周上にない既知点をもう1点観測する

③3点のうち1点以上距離設定を行う

4

各既知点間の夾角が狭すぎると、器械点座標を算出できない場合があります。特に、器械 点と既知点との距離が長くなるほど、各既知点間の夾角が狭いことを想定しにくくなりま す。また、同一円周上に各点が配列されやすくなりますので注意してください。

15. 杭打ち測定

杭打ち測定は、目標とする点の位置の値(杭打ちデータ)をあらかじめ本機に入力し、視準 している点が杭打ち点からどのくらい離れているかを表示させて杭打ち点の位置を探す測定 方法です。

左右のずれ、距離のずれ、および座標のずれは、以下のような式で計算され、表示されます。 左右のずれ

表示値(角度表示)=水平角の杭打ちデーター測定水平角

表示値(距離表示) = 測定水平距離 × tan(水平角の杭打ちデーター測定水平角)

斜距離のずれ(距離表示が、水平距離・高低差の場合も同様です) 表示値(斜距離表示)= 測定斜距離 一斜距離の杭打ちデータ

X 座標のずれ(座標表示が、Y・Z の場合も同様です) 表示値(座標値) = 測定 X 座標 - X 座標の杭打ちデータ

高さのずれ(REM 杭打ち) 表示値(高さ表示)= 測定 REM ー 杭打ち REM データ

- 杭打ちの方法には距離の杭打ち、座標の杭打ち、REM 測定の杭打ち、の3つの方法があります。
- 杭打ち測定メニューのソフトキー割り付けを作業用途や作業者の使い勝手に合わせて変更できます。

 「了「19.6 ソフトキーのユーザー割り付け」

15.1 杭打ち測定でのガイドライトの活用

ガイドライトを「ON」に設定しておくと、ライトの点滅で本機の状態を遠くからでも知ることができ、ライトの点滅と色でターゲットの移動指示ができるので、ポールマンの移動が効率的に行えます。

【 了 ガイドライトの ON/OFF:「5.1 基本のキー操作」

4

・ ガイドライトを ON に設定していても、ターゲットタイプがノンプリズム設定の測距時 と受光光量チェック時は、ガイドライト OFF になります。

● ガイドライトの状態と意味 本機の状態

ライトの状態	意味
遅い点滅(赤と緑同時)	待機中
	サーチ中
速い点滅(赤と緑同時)	測距中(連続測定時)
	受光光量チェック中
キレ緑の六万占減	測距エラー(信号なし、視準エラー)
小と称の文互点版	サーチエラー(エラー画面のみ)

杭打ち測定中のポールマンへの指示

ライトの状態	意味
だんだん速くなる点滅	(ポールマンから見て)前方にターゲットを移動
だんだん遅くなる点滅	(ポールマンから見て)後方にターゲットを移動
速い点滅	前後位置が合っている
赤	(ポールマンから見て)左方向にターゲットを移動
緑	ポールマンから見て)右方向にターゲットを移動
赤と緑の両方	左右位置が合っている

15.2 水平角と距離から杭打ち

基準の方向からの水平角と、原点(器械点)からの距離をもとに杭打ち点を求めます。

▶ 手 順

 杭打ちメニューに入る メニューモードで「杭打ち」を選択します。 <杭打ち>が表示されます。

- 角度の基準となる点を視準し、基準として 設定する
 <杭打ち>の「器械点設定」を選択して、<
 高さ設定>を表示します。器械点データを入 力し、【OK】を押すと、後視点設定画面に移 ります。
 ①デ「13.1 器械点データ入力」
- 3. 後視点の方向角を設定する

後視点の方向角を設定します。【OK】を押す と、<杭打ち>に戻ります。 【『「13.2 方向角の設定」

4. 杭打ち点の設定をする

<杭打ち>の「杭打ち設定」を選択して、< 角度距離杭打ち-杭打ち設定>を表示します。 「目標水平角」に基準の方向と杭打ち点の夾角 を、「目標斜距離」に原点(器械点)から杭打 ち点までの距離を目的に応じた距離モードで 入力します。

- 【SHVR】を押すと、距離モードが「水平距 離」、「高低差」、「REM 高」、「斜距離」に切 り替わります。
- ・ソフトキー2ページ目の【座標】を押して 目標座標を入力して【OK】を押すと、入力 された座標から杭打ち目標距離や角度を計 算します。

角度距離杭排	Tち - も	丸打ち	設定					×
距離モード	1				斜距	離		
目標水平	角			40)°50'0()"		5
目標斜距	離			10	0.000	m		
視準高				:	1.500	m		2
						1		
							-	1
							2	
	Shv	/r			O	<	F	'1

入力値を確定し、目標の方向まで本体を回転させる
 入力後は【OK】を押します。杭打ち画面に移ります。

【H 旋回】を押すと、本機が自動的に回転し、 杭打ち点までの水平角の差が 0°になります。

・2ページ目の【設定】を押すと、杭打ち精度 を設定できます。ここで設定した精度内に 入った時に方向指示が両矢印になります。

f	杭打ち測定設定	
Γ	杭打ち精度 0.050 m	0
		۲
		 _
		8
	ОК	
		I PZ

6. 距離の杭打ち測定を開始する

視準線上にターゲットを設置し、【測定】を押 して測距を開始します。 杭打ち点までの移動距離、移動の方向(矢印 で表示)が表示されます。視準点(現在ター ゲットを設置している点)の測定結果も表示 されます。

- ・移動方向指示。赤色は位置が合っている状 態です。
 - ⊲左へ : (本機から見て) 左方向にター ゲットを移動
 - ▷右へ :(本機から見て)右方向にター ゲットを移動
 - ⊲▷ :左右位置が合っている
 - ▼前へ :(本機から見て)手前にターゲットを移動
 - ▲後へ : (本機から見て)後方にターゲッ トを移動
 - ▲▼ :(本機から見て)ターゲットの前 後位置が合っている
 - ★上へ :ターゲットを上に移動
 - ▼下へ :ターゲットを下に移動
 - ★▼ : ターゲットの上下位置が合っている
- ・【SHVR】を押すと、距離モードが「水平距 離」、「高低差」、「REM 高」、「斜距離」に切 り替わります。大文字になっているのが選 択されているモードです。
- ・2 ページ目の【設定】を押すと、杭打ち精度 を設定できます。ここで設定した精度内に 入った時に方向指示が両矢印になります。

移動方向指示

角度距離杭	115 成打ち			×
観測グラ	11-127			4772
		-29°5	2'50"	0 🔋
		4.	383 ^m	
斜距離		14.	383 ^m	<u>ئاب</u>
鉛直角		84°20	6'10"	9.0
水平角		70°4	2'50"	_1 ☑
	Shvr	H旋回	測定	P1

角度距離杭	打ち - 杭打ち			×
観測で	i7ィック			•77
		х	4.722	0 🔋
		Y	13.514	۳
-29*53'		Z	1.395	
		斜	14.383 m	Ľ
	4 202	ZA	84°26'10"	
	4.303	HAR	70°42'50"	_1
	•			1
	Shvr	H旋回	測定	P1

7. ターゲットを移動して杭打ち点の位置を探す

杭打ち点までの距離が Om になる位置まで ターゲットを移動します。ターゲットの位置 が許容範囲内に入ると、上下、左右、および 手前・後方矢印それぞれ両方が表示されます。

8. 杭打ち測定を終了する

(ESC)を押すとく杭打ち設定>に戻ります。 次の杭打ち点を設定して、杭打ち測定を続け ます。

15.3 座標から杭打ち

求める点の座標データを入力すると、その方向角と器械点からの距離が計算されます。その 後水平角と距離測定を行うと、求める点までの差が表示されます。

- あらかじめ杭打ち点を登録しておき、順に杭打ちを行うことができます。50 点まで登録 できます。
- 乙座標まで求める場合は、視準高の変わらないポール等にターゲットを取り付けて使用してください。

▶ 手 順

- 杭打ちメニューに入る メニューモードで「杭打ち」を選択します。 <杭打ち>が表示されます。
- 2. 器械点と後視点を設定する

<杭打ち>の「器械点設定」を選択して、< 高さ設定>を表示します。必要に応じて後視 点の設定をします。

□ 15.2 水平角と距離から杭打ち 手順2~ 3

3. 杭打ち点を登録する

手順1の画面で「座標設定」を選択して、杭 打ち点(これから杭打ちを行う点)をすべて 登録しておきます。【追加】を押して座標を新 規登録します。

- ・ソフトキー2ページ目の【削除】を押すと、 選択した登録杭打ち点を削除します。
- ・ソフトキー2ページ目の【全削除】を押す と、登録杭打ち点を全て削除します。

座信杭打ち - 座信登録 一覧 グラフィック PT.01	X Y	1240.000 1235.000	× •// • 0
	Z — 彩 ZA HAR	1300.000 2180.097 m 53°23'40" 44°53'00"	
追加		OK	P1
			×

目標座標入力	×	
点名	PT.01	
座標X	1240.000	۲
座標Y	1235.000	
座標Z	1300	
		P
	UK	P1

4. 杭打ち点を選択する

手順3の画面で杭打ち点を選択して【OK】 を押すと、座標杭打ち画面に移ります。

5. 座標杭打ち測定を開始する

【H 旋回】を押すと、本機が自動的に回転し、 杭打ち点までの角度が0°になります。 視準線上にターゲットを設置し、【測定】を押 して測距を開始します。 杭打ち点までの移動距離、移動の方向(矢印 で表示)が表示されます。視準点(現在ター ゲットを設置している点)の測定結果も表示 されます。

・タブで表示を切り替えることができます。 「グラフィック 1」は、ミラーマンの位置を 基点として、ミラーマンが杭打ち点に進む 方向を示します。

「グラフィック 2」は、杭打ち点を基点として、杭打ち点とミラーマンの位置を表示します。

	/			
座標杭打ち	- 座標杭打ち			×
SHV XY	Z グラ イ ック	71 グラフィ:	y72	•77
	▲ /	x	7.493	0 🔋
	-1/740 1	Y	6.475	۲
		Z	1.391	
-1298.	⊇=>	斜	10.000 m	
	4 ' 03'	ZA	82°00'10"	80
		HAR	40°50'00"	
				_ <u>**</u>
OK	設定	H旋回	測定	

杭打ち点までの距離が Om になる位置まで ターゲットを移動させて杭打ち点を探します。 ↓ 予移動指示:「「15.水平角と距離から杭打 ち」手順5」

座標杭打ち - 座標杭打ち							
SHV XY	Z グラフィッ:	グラフィック1 グラフィック2					
			00'00"	0 🔍			
•			0.000 m	(@)			
		(0.000 m				
\$ ¥			0.000 m	11			
斜距離		10	D.519 m				
鉛直角		82	°14'10"	1			
水平角		42	°00'10"	1			
OK	設定	H旋回	測定				
広告は打ち	広告せけた						
	- 在場れ11つ	51 8:27.	42				
ISHV XY.	Z / //19,	1 277/2	//2				
		X	7.745	~			
	0.000	Y _	6.974				
	• 01000	Ζ	1.422	*			
		斜	10.519 m				
0.00.		ZA	82°14'10"				
		HAR	42°00'10"				
ОК	設定	H旋回	測定				
座着着打ち、	、座着枝打ち			×			
	王祉ルロッ フレがらフルノ	71 グラフィッ	/12				
	2 / //12/			0			
			0.00	۲			
		AV	0.000				
(*	0.000				
	-	斜	10.519m	1			
		ZA	82°14'10"	.1			
0.01		HAR	42°00'10"				
	記中		通中	1			

6. 杭打ち測定を終了する

【OK】を押すとく座標登録>に戻ります。次 の杭打ち点を選択して、杭打ち測定を続けま す。

15.4 REM 測定の杭打ち

ターゲットを直接設置できない点を求める場合に、REM 測定の杭打ちを行います。 『しま 「12.5 REM 測定」

▶ 手 順

- 1. ターゲットを目標物の鉛直下または直上に 設置し、視準高を巻尺などで測る
- 2. 視準高と後視点設定をする

<杭打ち>の「器械点設定」を選択して、< 高さ設定>を表示します。必要に応じて後視 点の設定をします。 「15.2 水平角と距離から杭打ち 手順2~ 3」

3. 杭打ち点の設定をする

<杭打ち>の「杭打ち設定」を選択して、< 角度距離杭打ち-杭打ち設定>を表示します。 【SHVR】を押して、距離値の入力モードを 「目標 REM 高」にして、目標高(測点から杭 打ち点までの高さ)を入力します。杭打ち点 までの水平角は必要に応じて入力します。

角度距離杭打ち - ネ	抗打ち設定					×
距離モード			REM	哥	47	
目標水平角		40°	50'00	ייו		5
目標REM高		3.	.300	m		
視準高		1	.500	m	_	-
					-	1
					7	2
shv	/R		Ok	<	F	1

4. 入力値を確定する

入力後は手順3の画面で【OK】を押します。 杭打ち画面に移ります。

【H 旋回】を押すと、手順3で入力した水平 角まで本機が自動的に回転し、杭打ち点まで の角度が0°になります。

5. ターゲットを視準する ターゲットを視準して【測定】を押します。 測定が開始し、測定結果が表示されます。

角度距離杭持	Tち - 杭打ち			×
観測 グラ	フィック			•77
● 左へ		-0°0	0'20"	0 🔋
斜距離		8.5	538 ^m	
鉛直角		86°14	4'40"	
水平角		40°50	0'20"	
	shvR	H旋回	測定	P1

6. REM 杭打ち測定を開始する

ソフトキー2ページ目の【REM】を押して REM 杭打ち測定を開始します。 視準点と杭打ち点までの距離(高さの差)と 方向(矢印で表示)が表示されます。

【停止】を押して測定を終了します。

杭打ち点までの距離(高さの差)が 0m にな る位置まで望遠鏡を動かして、杭打ち点を探 します。0m になったときの望遠鏡十字線の 中心が杭打ち点です。

・移動方向指示。赤色は位置が合っている状態です。 全
こ
望遠鏡を天頂方向に動かす

7. 杭打ち測定を終了する

(ESC)を押すと<角度距離杭打ち - 杭打ち設 定>に戻ります。 /移動方向指示

角度距離杭打ち - 杭打ち			×
観測 257ィック			•777
◎左へ	-0°0	3'00"	0
	-1.3	800 ^m	
余斗 足巨离隹	7.9	938 ^m	<u>ئا</u> ب
鉛直角	79°4 3	7'10"	
水平角	40°5	3'00"	1 ☑
設定		REM	P2

16.オフセット測定

直接ターゲットが設置できない点や、視準できない点を測定する場合はオフセット測定をし ます。

- 測定する点(求点)から少し離れたところ(オフセット点)にターゲットを設置し、測点からオフセット点までの距離と角度を測ることにより、求点までの距離と角度を求めることができます。
- ・ 求点を求める方法にはオフセット距離・オフセット角度・オフセット2点の三つの方法 があります。
- オフセット点の座標値を求めるときは、あらかじめ器械点設定と後視点方向角の設定が必要です。オフセット測定メニュー内で器械点設定と後視点設定を行えます。
 ぽぽ 器械点設定:「13.1 器械点データ入力」、後視点設定:「13.2 方向角の設定」
- オフセット測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。
 「ア「19.6 ソフトキーのユーザー割り付け」

16.1 オフセット距離

求点とオフセット点との水平距離を入力して求点を求めます。

- ・ 求点に対してオフセット点を左右方向に設置する場合は、器械点とオフセット点と求点が ほぼ 90°になるように設定してください。
- ・ 求点に対してオフセット点を前後方向に設置する場合は、器械点と求点とを結んだ線上に オフセット点を設置してください。

▶手順

 求点の近くにオフセット点を設置し、求点 とオフセット点の距離を測っておく オフセット点にターゲットを設置します。 オフセットメニューに入る
 メニューモードで「オフセット測定」を選択します。

- 3. オフセット点の設定をする 「オフセット距離」を選択します。オフセット 方向(オフセット点の求点との位置関係)と オフセット距離(オフセット点と求点の距離) を設定します。
 - ・オフセット点の方向

\leftarrow	: 求点の左
\rightarrow	: 求点の右
\downarrow	: 求点の手前
\uparrow	: 求点の向こう

オフセット測定	×
▮ 1.器械点設定	
÷	" 0
12.後視設定	
↓ ↓	<u> </u>
🏹 3.オフセット距離 🏼 🏹 4.	わせゅり角度 🖳
jズ 5.オフセット2点	
	- 戻る

わセット距離			×
斜距離		<null></null>	-772
鉛直角		<null></null>	0 🔋
水平角		<null></null>	۲
斜距離			
鉛直角		79 * 47'10"	
水平角		40*53'00"	
オフセット方	句 🗗		B.B
オフセット距離	ŧŧ	2.000 m	
OK	HVD/xyz	測定	
- 4. 入力値を確定し、求点の値を求める 入力後は手順3の画面でオフセット点を視準して【測定】を押します。【停止】を押 して測定を終了します。求点の値が表示されます。
 - 【HVD/xyz】を押すと、求点の測定結果の表示切り替え(距離・鉛直角・水平角/XYZ 座標)をします。

求点の測定結果

オンセット距離 8.186 m 斜距離 8.0°06'00" 水平角 26°31'20" 斜距離 7.938 m 鉛直角 79'47'10" 水平角 40°53'00" オフセット方向 ▼ オフセット距離 2.000 m					
計距離 計直角 松道角 水平角 26'31'20" 料距離 7.938 m 沿直角 79'47'10" 水平角 40'53'00" オ7セット距離 2.000m ○ 0 0 0 0 0 0 0 0 0 0 0 0 0	わセット距離				×
	斜距離 鉛直 小 野 離 角 小 彩 距 離 角 一 彩 む 平 距 離 角 小 彩 距 画 角 の 小 彩 正 画 角 の 小 彩 正 画 角 の の の の の の の の の の の の の		8. 80°C 26°3 7. 79°4 40°	186 m 06'00" 31'20" 938 m 47'10"	
	オフセット方 オフセット距	台 → 雑	2.	● 000m 測定	1 ₽
		TTODJAYZ		78375	

オフセット点の測定結果

 オフセット測定を終了する
 手順4の画面で【OK】を押すと、<オフ セット測定>に戻ります。

16.2 オフセット角度

求点に対して左右どちらかの、できるだけ近くにオフセット点を設置し、オフセット点まで の距離と求点の水平角を測定します。

▶手順

 求点の近く(器械点からの距離と高さがほぼ同じ点)にオフセット点を設置する オフセット点にターゲットを設置します。 オフセットメニューに入る メニューモードで「オフセット測定」を選択 します。

「オフセット角度」を選択します。

オフセット測定 × 1.器械点設定 0 👖 T. ക്ക 2.後視設定 L L. Л 1.2 | ジョ 3.オフセット距離 📝 4.わセ小角度 **.**. .1 | ジョン・シート2点| 7 戻る

3. オフセット点を測定する

オフセット点を視準して【測定】を押します。 【停止】を押して測定を終了します。

わセット角度			×
オフセット角度結果			•77
余斗足巨离隹	7	7.938 m	0
鉛直角	79	' 47'00"	۲
水平角		<null></null>	
	7	7.938 m	
鉛直角	79	' 47'10"	9.9
水平角	40	•53'00"	
	20165	しままた	
UK HVD/xyz	測定	水平用	

4. 求点を視準する

求点の方向を視準して、【水平角】を押し ます。

【HVD/xyz】を押すと、求点の測定結果の表示切り替え(距離・鉛直角・水平角/XYZ 座標)をします。

求点の測定結果

	わセット角度		×
Ľ	オフセット角度結果		•77
	斜距離	7.938 m	0
	鉛直角	79 * 47'00"	٩
L	水平角	40*53'00"	
Г		7.938 m	
	鉛直角	79 * 47'00"	B.
	水平角	40*53'00"	
	UK HVD/xyz	測正 水平用	

オフセット点の測定結果

 オフセット測定を終了する
 手順4の画面で【OK】を押すと、<オフ セット測定>に戻ります。

16.3 オフセット2点

求点から直線上にオフセット点 A・Bを設置し、A と B を観測して、B と求点間の距離を入 力して、求点を求めます。

・ ターゲットに特別付属品の2点ターゲット(2RT500-K)を使用すると便利です。 **[7]** 「24 特別付属品」

2 点ターゲット(2RT500-K)の使用方法

- ・求点に2点ターゲットの先端を合わせて設置します。
- ・ターゲットを機械と正対させます。
- ・求点からターゲットBまでの距離を測っておきます。
- ・プリズム定数補正値は 0mm に設定します。

備考

・2 点ターゲットご使用時は、目視による視準をおすすめします。自動視準に設定する と、サーチ範囲内に複数のターゲットがあるため、誤動作したり、ターゲットとして見 つけられないことがあります。 **〔**了「10.1 自動視準の設定」

▶ 手 順

 北点からの直線上に、オフセット点を2点 (点 A・B) 設置する オフセット点にターゲットを設置します。

 オフセットメニューに入る メニューモードで「オフセット測定」を選択 します。

「オフセット2点」を選択します。

- オフセット測定 × 17 1.器械点設定 0 Ŧ (**@**) ■ 2.後視設定 d þ T L. Ш 1.* **.** 📝 3.オフセット距離 | 📝 4.わセット角度 .1 📝 5.オフセット2点 7 戻る
- オフセット点の設定と、測定情報の入力を する
 【設定】を押してオフセット点の設定をしま す。オフセット点 B から求点までの距離を 「オフセット距離」に入力し、ターゲットを設 定します。入力後は【OK】を押します。
 - ・【登録】を押すと、ターゲットのプリズム定 数補正値を登録することができます。
- × わセット2点 - 設定 × 77 オフセット距離 0.500 m 0 ターケット プリスム **€** T フツレスンに定数 0 mm 補正値 プリズム直径 58 mm . **•** _1 7 啓録 OK
- 4. ターゲット A を測定する ターゲット A を視準し、【測定】を押して測 定を開始します。【停止】を押して測定を終了 します。オフセット点 A の測定結果が表示さ れるので、確認後【はい】を押します。

5. ターゲット Bを視準する

ターゲット B を視準し、【測定】を押すと測 定を開始します。【停止】を押して測定を終了 します。オフセット点 B の測定結果が表示さ れます。

6. 測定結果を確定し求点の値を求める

【はい】を押すと求点の値が表示されます。

【HVD/xyz】を押すと、求点の測定結果の表 示切り替え(距離・鉛直角・水平角/ XYZ 座 標)をします。

わ っ ト2点・	· 結果			×
オフセット2点				
斜距離		8.4	438 ^m	0 [] () ()
鉛直角		66°14	4'20"	
水亚布		1015		
小十角		40 5	3.00.	8.
				<u> </u>
OK	HVD/xyz			

7. オフセット測定を終了する

【OK】を押すと<オフセット測定>に戻りま す。

17. 対辺測定

対辺測定では、基準となるターゲット(原点)から他のターゲット(目標点)までの斜距離、 水平距離、高低差を測定します。原点を後視点として複数の目標点を連続して測定します。

- ・ 測定点を新たに原点として置き換え、次の目標点との間の対辺測定ができます。
- 2 点間の勾配%表示もできます。

対辺測定メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。
 「ア「19.6 ソフトキーのユーザー割り付け」

17.1 複数の目標点間の連続測定

▶ 手 順

- 1. 対辺測定をする
 - メニューモードで「対辺測定」を選択します。

原点を視準して【測定】を押します。【停止】 を押して測定を終了します。 目標点を視準して【対辺】を押します。【停 止】を押して測定を終了します。

原点と目標点との間の斜距離、水平距離、高 低差が表示されます。

備考

・既に測定データがある場合は、手順2の画 面表示となり、測定が開始します。

対辺測定			×
原点を測定してください。			•77
			0
			۲
			ٹا۔
赤斗正巳尚臣			(iii) 👝
鉛直角	79	' 47'10"	88
rk亚鱼	40	*53'NN"	
	10	55 50	1
	測定		

対辺測定				×
2点間斜距離			•7	1
勾配				0
2点間水平距離			0	Ð
2占間高低差			◀	Þ
				ک
乐斗战巨离街	7	′.938 m	(iii)	
鉛直角	79	47'10"	8	
水平角	40	•53'00"		, I 74
			<u>با</u>	<u> </u>
	測定	対辺		

2. 連続して対辺測定をする

次の目標点を視準して【対辺】を押し、 測定を開始します。原点を後視点として 複数の点を連続して測ることができます。

- ・【測定】では原点を測定し直すことがで きます。原点を視準して【測定】を押し ます。
- ・【原点移動】を押すと現在の点を新たに
 原点として置き替え、次の目標点との間の対辺測定ができます。
 『「「17.2 原点の変更」

原点と目標点間の測定結果

	计计算机中					V
1	X122.81Æ					\sim
	2点間斜	距离推	1	.707 m		1
	勾配		-1	.113%		0
	2点間水	平距離	1	.707 m	q	₽
	2点間高	低差	-0).019 m		
Г	 		6	5.262 m		Ľ
	鉛直角		77	•11'20"	명	
	水平角		41	16'30		
					<u>با</u>	
		原点移動	測定	対辺		

現在の点の測定結果

3. 対辺測定を終了する

(ESC) または【×】を押して、対辺測定を終 了します。

17.2 原点の変更

対辺測定で目標点の測定をしたあと、その点を新たに原点として次の点との間の対辺測定を することができます。

▶手順

1. 対辺測定を行う

「17.1 複数の目標点間の連続測定」の手順1ま で行います。

2. 目標点を新原点とする

目標点を測定した後、【原点移動】を押しま す。

対辺測定			×
2点間斜距離	1	.707 m	•772
勾配	-1	.113%	0
2点間水平距離	1	.707 m	۲
2点間高低差	-0	.019 m	
	6	.262 m	
鉛直角	77	11'20"	81
水平角	41	16'30"	
			<u>_</u>
原点移動	測定	対辺	

原点移動の確認メッセージが表示されるので、 【はい】を押します。

・【いいえ】を押すと、中止します。

3. 新原点を後視点として対辺測定を続ける

「17.1 複数の目標点間の連続測定」の手順2~3と同様に測定を行います。

3点以上の点の座標を指定し、それらの点で囲まれた画地の面積(斜面積と水平面積)を座 標法により求めます。

- 指定する点の座標は3点以上30点までです。
- ・ 画地を囲む点を順に測定していく方法です。
- ・ 面積計算メニューのソフトキーを作業用途や作業者の使い勝手に合わせて観測モードに割り付けることができます。

€了「19.6 ソフトキーのユーザー割り付け」

4

- ・ 画地を囲む点の測定が2点以下の場合はエラーとなります。
- ・ 画地を囲む点は右回り、または、左回りで順番に(例:P3 → P2 → P1 → P5 → P4)測 定していきます。順番に入力しないと、正しい面積が算出されません。

解 斜面積

最初に指定した3点(測定)で斜面積の平面を形成します。4点目以降に指定した点は この平面に垂直に投影して、斜面積が計算されます。

▶ 手 順 測定による面積計算

1. 面積計算メニューに入る メニューモードで「面積計算」を選択します。

2.1 点目を視準する

【観測】を押して<観測>に移ります。画地を 囲む点の1点目を視準して、【測定】を押し ます。【停止】を押して測定を終了します。

面積計算 - 座標登錄			×
	X	0.000	477
	Y	0.000	0
	z	<null></null>	۲
			<u></u>
			.
			_1
L	1		\mathbf{P}
	観測	計算	

面積計算 - 観測		×
		4772
		0
		۲
余斗足巨离隹	6.262 ^m	
	77°11'10"	
	// 11 10	8.8
∥水平角	41°16'30"	1
		1
	測定	

3. 測定結果を確定する

測定結果が表示されるので、確認後【はい】 を押します。1 点目の測定値が「PT_01」に 設定されます。

a		ı x
面積計算 - 測定結果	×	
X	4.589	
Y	4.028	ര്
Z	1.389	
余斗足巨离隹	6.262 m	1.
鉛直角	77*11'20"	
水平角	41 [•] 16'30"	
はい	いいえ	Ľ.

面積計算 - 座標登錄			×
Pt_01] X	4.589	•77
	Y	4.028	0
	z	1.389	۲
			ٹا_
			.
			_1
			7
	観測	計算	

4.2点目以降を視準する

手順2~3と同様に測定を続けます。右回 り、または、左回りで順番に(例:P3→P2 →P1→P5→P4)測定していきます。

5. 計算結果を表示させる

【計算】を押すと、計算結果が表示されます。

面積計算 - 座標登錄			×
Pt_01] X	6.343	1 77
Pt_02	Y	6.668	0
Pt_03	Z	1.389	٩
IPt_04			
			ٹارے
			.
			_1
			<u> </u>
	観測	計算	
面積計算 - 面積結果			×
面積計算 - 面積結果 点数		5	× •///
面積計算 - 面積結果 点数 斜面積	4 9	5 71m ²	
面積計算 - 面積結果 点数 斜面積	4.9	5 71m ²	
面積計算 - 面積結果 点数 斜面積	4.9 [°] 0.00	5 71m² 05ha	
<u>面積計算 - 面積結果</u> 点数 斜面積 平面積	4.9 [°] 0.00 4.9 [°]	5 71m² 05ha 73m²	
面積計算 - 面積結果 点数 斜面積 平面積	4.9 0.00 4.9	5 71m ² 05ha 73m ²	
<u>面積計算 - 面積結果</u> 点数 斜面積 平面積	4.9 0.00 4.9 0.00	5 71m ² 05ha 73m ² 05ha	

6. 面積計算を終了する

【OK】を押すと、<座標登録>に戻ります。 (ESC) または【×】を押して、面積計算を終 了します。

19. 各種設定

設定モードで行う各種設定項目の内容と設定方法を説明します。測定条件に合わせて、各種 項目を適したものに変更することができます。

設定モードの各メニューを選択して設定します。

スターキーモードの設定モードアイコンをタップしても同じメニューを選択できます。

設定モードの次の項目については別の章で説明されています。

- ・ 通信設定
- 『こう 「9. 外部機器との接続」
- ・ モーター設定
- 10.1 自動視準の設定」
- ・ 器械定数
- □ 「21.2 電子気泡管」、「21.3 コリメーション」、 「21.5 イメージセンサー」

19.1 観測条件

観測条件設定			×
距離表示	余斗捉巨离隹		
水平距離	現場距離	•	
傾斜角補正	あり(H,V)	-	
倾斜角エラー時	なし	•	12
コリメーション補正	あり	•	9.0
両差補正	なし	•	
∨⊽ニュアル	No	•	
Vモ∽ŀ`	天頂角	•	
投影補正	なし	•	
角度表示	1"	-	
距離分解能	1mm	•	
ppm設定	湿度なし	•	-
		OK	

設定項目と各項目の選択肢 (*:工場出荷時の設定)

距離表示	: 斜距離*/水平距離/高低差
水平距離 🛍	: 現場距離*/平面距離
傾斜角補正 🛍	: あり(H、V)*/なし/あり(V)
傾斜角エラー時	: なし*/<チルト> (電子気泡菅表示)
コリメーション補正 🛍	: なし/あり*
両差補正	: なし*/K = 0.142 /K = 0.20
V マニュアル	∶No *∕Yes
V モード(鉛直角表示方法) 🛍	: 天頂角*/水平 0゜/水平± 90゜
投影補正 🛍	: なし*/あり
角度表示(最小角度表示)	: DS-103AC:1″ */5″
	DS-105AC:5″ /10″ *
距離分解能(最小距離表示)	: 0.1mm / 1mm *
ppm 設定	: 湿度なし*/湿度あり

【了「V マニュアル」の「Yes」設定:「26.2 正反視準による高度目盛のリセット」

解 水平距離

本機は斜距離を使って水平距離を算出します。 水平距離の表示方法は、以下の2通りから選択することができます。

現場距離:投影補正係数を反映していない距離

平面距離:現場距離に投影補正係数を反映した平面直角座標系上の距離 (「投影補正:なし」に設定している場合は、平面直角座標系上の距離)

解 傾斜角補正

内蔵の2軸電子気泡管によって鉛直軸の傾きが測定され、鉛直角と水平角が自動的に補 正される機能です。

- ・自動補正された角度を読むときは、表示が安定してから読んでください。
- ・水平角の誤差(鉛直軸誤差)は、鉛直角によって変化しますので、本体が完全に水平 に整準されていない場合は、鉛直角が変化する(望遠鏡を回す)と水平角も自動補正 の働きで変化します。
- ・補正後の水平角=補正なしの水平角+水平軸方向の傾き/tan(天頂角)

- ・望遠鏡を天頂または天底付近に向けたときには、水平角の自動補正は OFF になります。
- 解し コリメーション補正

水平軸誤差と視準軸誤差による水平角の誤差が自動的に補正される機能です。通常は 「あり」でご使用ください。

天頂 0°

0° 0°

۵n

水平± 90°

解 投影補正

本機は斜距離を使って水平距離を算出します。

高い標高で測定するときは地球の曲率の影響を受けるため、投影補正を行うことを推奨 します。

球面距離は、以下の式で算出されます。

$$(HDg) = \frac{R}{(R+H)} \times HD$$

R= 地球の平均曲率半径(6,371,000m) H= 平均標高 *1 HDg= 球面距離 HD= 水平距離

*¹ 平均標高は、器械点標高と視準点標高より自動的に算出します。

精密測定時の距離分解能(最小距離表示)を選択します。この設定に連動して、高速測 定とトラッキング測定時の距離分解能も変わります。

19.2 器械設定

器 積設定			×
オートパワーオフ	30分		
オートパワーオフ(電源ONコマント	ッ <u>に</u>	-	ሀ 0 (ሙ)
パックライトくレチクル照明点灯時	0 1	-	Ť
バックライト(通常時)	自動	-	Ŀ
バックライトオフ時間	なし	-	.
キーライト	オン	-	_1
レチクル照明	3	-	1
EDM絞り	79-	-	
レーサ゛ー照準オフ	, 5分	-	
音	あり	-	
電源ONコマンド	無効	-	
色設定	自動	-	
タッチパネル	有効	•	
タッチハ°ネル		ОК	

設定項目と各項目の選択肢(*:工場出荷時の設定)

オートパワーオフ 🋍	:	なし/5分/10分/15分/30分*
オートパワーオフ(電源 ON コ ⁻	マ:	ンド)麗
		なし*/5分/10分/15分/30分
バックライト(レチクル照明点	ξĮΒ	侍) 麗印
	:	0~8(1 *)(段階)
バックライト(通常時) 🌆	:	0~8(段階)/自動*
バックライトオフ時間 ស	:	なし*/30秒/1分/5分/10分
キーライト 🌆	:	オフ/オン*
レチクル照明(十字線照明) 🌆	:	0~5(3*)(段階)
EDM 絞り 🌆	:	フリー*/固定
レーザー照準オフ ស	:	なし/1分/5分*/10分/30分
音	:	あり*/なし
電源 ON コマンド	:	無効*/有効
色設定 🛍	:	1(カラー)/2(モノクロ)/自動*
タッチパネル	:	有効(固定)

備考

【タッチパネル】を押すと、タッチパネル調整画面が表示されます。
 『ア「8.1 タッチパネルの調整」

解 説印 バックライトの明るさ変更とレチクル照明・キーライトの ON/OFF

[☆]を押すと、レチクル照明・キーライトの ON/OFF と連動して、バックライトの明 るさが変わります。

電源を ON にしたときは、「バックライト(通常時)」で設定した明るさです。工場出荷 時の設定では「バックライト(通常時)」が「バックライト(レチクル照明点灯時)」よ りも明るくなっています。

それぞれの明るさの設定は、変更することができます。

備考

「バックライト(通常時)」を「自動」にすると、照度センサーで周囲の明るさを感知して表示部の明るさを自動的に調整します。周囲の明るさによっては自動調整がうまくいかなかったり、多少ちらついて見えることがあります。

解 説 レ オートパワーオフ

設定した時間を経過すると、節電のため自動的に電源を OFF にする機能です。

|解____ 説[】オートパワーオフ(電源 ON コマンド)

制御コマンドによって電源を ON にした場合、設定した時間を経過すると、節電のため 自動的に電源を OFF にする機能です。

備考

・制御コマンドや通信フォーマットの詳細を記した「コミュニケーションマニュアル」
 については、最寄りの営業担当にお問い合わせください。

解し バックライトオフ

設定した時間を経過すると、節電のため自動的にバックライトを OFF にする機能です。 バックライトが「バックライト(レチクル照明点灯時)」の状態のときは、OFF にされ ません。

解し キーライト

キーの照明を「オン」または「オフ」に設定できます。キーライトが「オン」設定時 に、[☆]の操作に連動してキーライトが点灯/消灯します。

解 説 DEDM 絞り

本機内部の距離計の受光光量調整状態を設定します。連続測定を行うときに、状況に合わせて設定してください。

「EDM 絞り」を「フリー」にすると、連続測定中にターゲットから戻ってくる光量の増減 を距離計内の EDM 絞りが調整します。連続測距中にターゲットを移動する場合や、別 のターゲットを測定する場合は、「フリー」に設定します。

「EDM 絞り」を「固定」にすると、連続測定を終了するまで、光量調整は一定です。 連続測定中に断続的に光が遮られると「信号なし」のエラーメッセージが表示され、遮ら れるたびに光量調整を行うため、測定値が表示されるまで若干時間がかかります。 受光光量が安定しているターゲットによる測定で、障害物(人、車、木の枝等)によっ てしばしば光が遮られる場合は、「固定」に設定します。

備考

距離測定モードが「トラッキング」(移動しているターゲットの距離測定)の場合、
 「EDM 絞り」の設定にかかわらず EDM 絞りを調整します。

解 説① レーザー照準オフ

設定した時間を経過すると、節電のため自動的にレーザー照準を OFF にする機能です。

解 色設定

日差しが強く、ディスプレーの表示が見えにくいときは「2 モノクロ」を選択してくだ さい。「自動」にすると照度センサーが周囲の明るさを感知して自動的にディスプレー の色を切り替えます。

〔〕 照度センサー:「5.2 表示部とその操作」

4

19.3 EDM 設定

●「EDM」タブ

EDM設定				×
EDM pp	m			-772
測距モード		精密連続	•	0
ターゲット		7°YX`L	•	
プリズム定	数補正値	C) mm	
プリズム直	径	58	mm	9.
照明キー長	押	レーザ - 照準	┋╺╴	_1
	登録		OK	

設定項目と各項目の選択肢・入力範囲(*:工場出荷時の設定)

測距モード(距離測定モード)		精密連続*/精密平均(回数は1*~9回より選択)
ターゲット	:	プリズム*/360°プリズム/シート/ノンプリズム
プリズム定数補正値 🛍	:	- 99~99(「プリズム」選択時:0*、「360°プリ
		ズム」選択時:-7、「シート」選択時:0*)(距離分
		解能 1mm 時)
プリズム直径	:	1 ~ 999(「プリズム」選択時:58 *、「360°プリ
		ズム」選択時:34、「シート」選択時:50 *) (mm)
照明キー長押し([☆]の機能)	:	レーザー照準*/ガイドライト
ガイドライト(明るさ)	:	1~3(3*)(段階)

・「測距モード」の「精密平均」の回数は、数字キー、【+】、または【-】で設定します。
 ・ターゲットの情報を登録・編集することができます。

■ 「手順 ターゲットの登録・編集」

「ターゲット」で「ノンプリズム」を選択すると、「プリズム定数補正値」・「プリズム直径」は表示されません。

 [「]自動」にしたときに、照度センサーを手などで覆ったままにしないでください。明 るさが正しく感知されず、ディスプレーがちらついて見えることがあります。

・「プリズム定数補正値」は、「距離分解能」の設定が 0.1mm のとき小数第一位まで入力 できます。

【了「距離分解能」の設定:「19.1 観測条件」

- ・「プリズム直径」入力推奨値は、プリズム 2 型:58、プリズム 5 型:32、ATP1/ ATP1S:34、反射シート:シートの大きさ、です。
- ・「プリズム定数補正値」・「プリズム直径」のいずれか、または両方を変更して【OK】を 押すと、ステータスパーやスターキーモードのターゲットタイプに、変更したプリズム 情報が一時的に追加表示されます。データコレクターから本機にターゲット情報を設定 したときも、ステータスパーやスターキーモードのターゲットタイプに変更したプリズ ム情報が一時的に追加表示されます。いずれも<ターゲット登録>には登録されませ ん。
 - 『アステータスバー:「5.2 表示部とその操作」、スターキーモード:「5.4 スターキー モード」、<ターゲット登録>:「手順 ターゲットの登録・編集、イニシャライズ処理 理:「8.2 ソフトウェア上の障害が発生したら
 [新 イニシャライズ処理]
- ・ガイドライトの明るさ(ガイドライト)は、「照明キー長押し」が「ガイドライト」に 設定されているときにのみ表示され、設定できます。

解し プリズム定数補正値

反射プリズムには、それぞれプリズム定数があります。使用する反射プリズムのプリズ ム定数補正値を設定してください。

また、ターゲットごとに定数補正値を設定することができます。「ターゲット」を切り 替えると、登録してあるプリズム定数補正値になります。

●「ppm」タブ

EDM設定				×
EDM ppm				477
気温			15 °C	0 🔋
気圧		10	013 hPa	
湿度			50 %	
ppm	_	_	0	
				_1
				7
	Oppm		OK	

- ・【Oppm】を押すと気象補正係数が0になり、気温、気圧は工場出荷時の値が設定されます。
- ・気象補正係数は、気温と気圧を入力することで計算されて設定されますが、気象補正係数を直接入力することもできます。
- ・基本モードとプログラムモードで気温・気圧・湿度・ppmの設定が異なる場合は、プログラムモードの設定が優先されます。

設定項目と各項目の選択肢・入力範囲(*:工場出荷時の設定)

気温	: - 30~60(15*)(℃)(距離分解能1mm時)
気圧	: 500~1400 (1013 *) (hPa), 375~1050
	(760 *)(mmHg)(距離分解能 1mm 時)
湿度	: 0 ~ 100(50 *)(%)(距離分解能 1mm 時)
ppm(気象補正係数) 🛍	: - 499 ~ 499(0 *)(距離分解能 1mm 時)

- ・「湿度」は、観測条件設定の「ppm 設定」が「湿度あり」に設定されている場合に表示 されます。
- ・「距離分解能」が 0.1mm のとき、設定項目は小数第一位まで入力できます。

解 気象補正係数

気象補正係数は、空気中の光の速度が気温や気圧によって変わることを考慮して距離測 定する場合に設定します。

- ・ 本機は気圧 1013hPa、気温 15 ℃、および湿度 50% の気象条件で補正係数が Oppm となるよう設計されています。
- ・本機では、気温、気圧、および湿度を入力することにより気象補正係数が計算され、 設定されます。気象補正係数は次の式で算出されています。

気象補正係数 (ppm) = $282.324 - \frac{0.294362 \times p}{1 + 0.003661 \times t} + \frac{0.04127 \times e}{1 + 0.003661 \times t}$

- t∶温度 (℃)
- p:気圧(hPa)
- e:水蒸気圧(hPa)
- h:相対湿度(%)
- E:飽和水蒸気圧
- ・ e(水蒸気圧)は、次の式で算出することもできます。

$$e = h \times \frac{E}{100}$$

$$\mathsf{E} = 6.11 \times 10^{\frac{(7.5 \times t)}{(t + 237.3)}}$$

- ・本機は光を利用して距離を測定していますが、光が進む速度は大気の光波屈折率に よって変化します。この大気の光波屈折率は気温および気圧によって変化し、常温大 気圧付近では、気圧不変ならば、気温1℃の変化で約1ppm、気温不変ならば、気 圧 3.6hPa の変化で約1ppm 変化します。
- そこで、光の速度の変化を考慮にいれ、より高精度な測定を行うには、より正確な気温および気圧から気象補正係数を求め、補正を行う必要があります。
- ・ そのため、気温および気圧は精度の高い計器で測定することをおすすめします。
- ・「気温」、「気圧」、および「湿度」には、測定光路のそれぞれの平均を入力します。
- ・ 平坦地:中間地点の気温、気圧、および湿度を採用します。
- ・丘陵地、山岳地:中間点(C)の気温、気圧、および湿度を採用します。
 中間点の気温、気圧、および湿度を測ることができない場合には、器械点(A)と反

射プリズム設置点(B)の気温、気圧、および湿度からそれぞれの平均を求めて採用 します。

・ 気象補正を行わない場合は、Oppm に設定します。

▶ 手 順 ターゲットの登録・編集

< EDM 設定>の「EDM」タブで「ターゲット」または「プリズム定数補正値」を選択して いるときは【登録】が表示され、ターゲットの情報を登録・編集することができます。

EDM設定				×
EDM ppi	m			4772
	-	精密連続	-	0 🛛
ターゲット		7"リス"ム	Ţ	۲
プリズム定義	数補正値	0	lmm	
プリンし店な		0	mm	
	1± 1+00	8C		
炽中月十一云 	zfΨ	1771,241	•	
	登録		ОК	Ĺ

1. 登録画面を表示させる

【登録】を押します。登録されているターゲットの一覧が表示されます。

- ・【追加】:このソフトキーを押して表示される一覧画面から追加したいターゲットを選択して【OK】を押すと、ターゲットの一覧に追加表示されます。ターゲットは6種類まで登録できます。
- 【削除】:選択しているターゲットを削除します。

ターグット登録	1			×
ターケット	5	È数 直:	径	-772
プリズム	0	58		0 0
360°7°97	°Ц -	7 34		۲
シート	0	50		
ノンプリズム	1			
				.
				_1
追加	編集	削除	OK	Í

2. ターゲットの情報を編集する

編集したいターゲットを選択して【編集】を 押すと、<ターゲット編集>が表示されます。 各項目の選択と入力をします。

ターゲット	:	プリズム/シート
		/ノンプリズム/
		360°プリズム
プリズム定数補正値	:	$-99\sim99$ (mm)
プリズム直径	:	$1\sim 999$ (mm)

- ・「ターゲット」を「ノンプリズム」に選択した場合、プリズム定数補正値とプリズム直径は「0」になります。
- ターゲットの編集を終了する
 手順2の画面で【OK】を押すと、編集した
 内容を保存して手順1の画面に戻ります。
 【OK】を押すと、< EDM 設定>に戻ります。

19.4 タブの追加と変更

観測モードとメニューモードのタブを、測定条件や作業者の使い勝手に合わせて設定できま す。

- ・ 設定したタブは、電源を OFF にしても次に変更するまで保存されます。
- 設定を元に戻すには、「タブの追加と変更 手順1」のく画面選択>で【クリア】を選択します。画面、ソフトキー、およびステータスバーの設定も元に戻ります。
- タブは、5 タブになるまで追加できます。

4

・ タブを追加・変更すると、それ以前に記憶されていたタブの設定は消去されます。

● 工場出荷時のタブ設定と追加・変更ができるタブ

タブの設定変更ができるのは、以下の画面です。

・観測モードく観測>

工場出荷時の設定	追加・変更ができるタブ
SHV	SHV
距離	距離
グラフィック	座標

・メニューモード<角度距離杭打ち-杭打ち>

工場出荷時の設定	追加・変更ができるタブ
観測	観測
グラフィック	

・メニューモード<座標杭打ち-座標杭打ち>

工場出荷時の設定	追加・変更ができるタブ
SHV	SHV
XYZ	XYZ
グラフィック 1	
グラフィック 2	

12

・ グラフィックタブは削除することはできません。

▶ 手順 タブの追加と変更

タブの設定メニューに入る
 <設定>で「カスタマイズ」を選択します。

変更したい画面を選択して、「タブページ」を 選択します。

ุ≌ 1.観測	
❷ 2.角度距離抗打ち	
🕒 3.座標杭打ち	
 	1
クリア 戻	3
J	
-1 -	
▼ 1.観測	
▼ 1.観測 ■ 1.97 [*] ージ [*]	
 1.観測 1.タブページ 2.コントロール 	
 ▼ 1.観測 □ 1.タブページ □ 2.コントロール □ 3.ソフトキー 	

追加・変更するタブを選択する <カスタマイズ タブページ>で【追加】・【削 除】などの各ソフトキーを押します。

- ・【追加】を押すと、選択したタブがタブの最 後に追加されます。
- ・ソフトキー2ページ目の【挿入】を押すと、
 現在のタブの前に、選択したタブが挿入されます。
- ・ソフトキー2ページ目の【設定】を押すと、
 現在のタブが選択したタブに変更されます。
- 【削除】を押すと、現在のタブが削除されます。

カスタマイス゛タフ゛ヘ*ーシゾ観測 × SHV 距離 グラフィック Π 0 斜距離 9.307^m (@)) <u>د ال</u> 鉛直角 81°25'40" 1.2 **9.** 水平角 323°56'10" ..1 7 追加 削除 P1 OK

追加		×	×
種類	SHV		
	SHV		٠
	距离推动		
	/至9宗		<u>ئا</u>
			.
	OK		

4

・タブを削除すると元に戻せません。

「種類」から割り付けしたいタブを選択しま す。

3. 次に設定するタブを選択する 手順2を繰り返して、設定作業をします。

4. タブの設定を終了する

すべてのタブの設定が終わったら、【OK】を 押します。設定が記憶され、<メニュー>に 戻ります。設定した画面では、新しいタブの 表示になります。

19.5 画面の表示項目変更

画面の表示項目を、測定条件や作業者の使い勝手に合わせて設定できます。

- ・ 設定した表示項目は、電源を OFF にしても次に変更するまで保存されます。
- 設定を元に戻すには、「表示項目の変更 手順1」の<画面選択>で【クリア】を選択します。タブ、ソフトキー、およびステータスバーのユーザ割り付けの設定も元に戻ります。
- ・ 「グラフィック」タブの表示項目は設定できません。

4

・ 表示項目を変更、登録すると、それ以前に記憶されていた設定は消去されます。

▶ 手順 表示項目の変更

表示項目の設定メニューに入る
 <設定>で「カスタマイズ」を選択します。

変更したい画面を選択して、	「コントロール」
を選択します。	

画面選択		×
❷ 1.観測		• 77
■ 2.角度距離杭打ち		
■ 3.座標杭打ち		
≝ 4.スターキーモート [*]		_1 🗩
<i>р</i> уг	戻る	
∽נ_ל		×
だ♪~ ▼ 1.観測		×
メニュー ▼ 1.観測 単 1.タブページ		
≠_=- ▼ 1.観測 ■ 1.タブページ ■ 2.コントロール		
★_x~ ▼ 1.観測 ■ 1.タブ [*] へ [*] ージ [*] ■ 2.コントロール ■ 3.ソフトキー		

- 表示させる項目を追加する
 【追加】を押すと、項目が追加表示されます。
 - ・【削除】を押すと、選択している項目が削除 されます。

¥

- ・ 項目を削除すると元に戻せません。
- 表示させる内容を選択する 項目の選択肢から、表示させる内容を選択し ます。

文字の大きさなどを設定する
 【設定】を押して、文字の大きさ、属性、色、および文字間を選択します。

5. 次の表示項目の変更をする

手順2~4と同様に、変更作業を繰り返しま す。

6. 表示項目の変更を終了する

すべての表示項目の変更が終わったら、【OK】 を押します。変更が記憶され、<メニュー> に戻ります。変更をした画面では、変更後の 表示になります。

19.6 ソフトキーのユーザー割り付け

ソフトキー割り付けを、測定条件に合わせて設定できます。作業用途や作業者の使い勝手に 合わせて独自のソフトキー割り付けが行えますので、効率的に作業を進めることが可能です。

- ・ 設定したソフトキー割り付けは、電源を OFF にしても次に変更するまで保存されます。
- 割り付けを元に戻すには、「ソフトキーの割り付け 手順1」の<画面選択>で【クリア】
 を選択します。タブ、画面、およびステータスバーやスターキーモードの設定も元に戻ります。

4

- ソフトキー割り付けを変更・登録すると、それ以前に記憶されていたキーの割り付けは消去されます。
- ・「グラフィック」タブへのソフトキーの割り付けはできません。

● 割り付けが変更できる画面と、工場出荷時の割り付け

①観測モード<観測>「SHV」タブ、「距離」タブ
 1ページ目:【サーチ】【モーター】【0セット】【測定】
 2ページ目:【メニュー】【EDM】【任意角】【座標】
 3ページ目:【オフセット】【後方交会】【REM】【杭打】

- ②メニューモード<角度距離杭打ち-杭打ち>「観測」タブ 1ページ目:【---】【SHVR】【H 旋回】【測定】
 2ページ目:【設定】【---】【---】【REM】
 3ページ目:【---】【---】【---】【---】
- ③メニューモード<座標杭打ち 座標杭打ち>「SHV」タブ、「XYZ」タブ
 1ページ目:【OK】【設定】【H 旋回】【測定】
 2ページ目:【---】【---】【---】
 3ページ目:【---】【---】【---】【---】

● 割り付けることができるソフトキーとその機能

[]	:	機能を設定しない
【測定】	:	距離と角度を測定
【0セット】	:	水平角を0゜に設定
【任意角】	:	水平角任意設定
[SHV]	:	「距離」タブに表示が切り替わり、S(斜距離)、H(水平距 離)、V(高低差)が表示(①のみ割付可能) 「距離」タブがない場合は、タブを作成
[R / L]	:	水平角右回り/左回りの選択(大文字になっているのが、選択 されている表示方法)
【ZA /%】	:	鉛直角/勾配(%)表示切り替え(大文字になっているのが、 選択されている表示方法)
【ホールド】	:	水平角ホールド/ホールド解除

【呼出】	:	最終の測定データを表示する
【HV アウト S】	:	測角データを外部機器に出力する(SET フォーマット)
【HVD アウト S】	:	測距・測角データを外部機器に出力する(SET フォーマット)
【XYZ アウト S】	:	座標データを外部機器に出力する(SET フォーマット)
【HV アウト T】	:	測角データを外部機器に出力する(GTS フォーマット)(①の み割付可能)
【HVD アウト T】	:	測距・測角データを外部機器に出力する(GTS フォーマット) (①のみ割付可能)
【XYZ アウト T】	:	座標データを外部機器に出力する(GTS フォーマット)(①の み割付可能)
【高さ】	:	器械点座標、器械高、視準高を設定
【光量】	:	光量表示
【チルト】	:	電子気泡管表示
【モーター】	:	モーターメニュー(指定角旋回など)
【反転】	:	反転
【サーチ】	:	ターゲットを自動視準
【定速旋回】	:	水平角と望遠鏡部を定速回転
[EDM]	:	EDM 設定
【メニュー】	:	メニューモードへ(座標測定、杭打測定、オフセット測定、
		REM 測定、対辺測定、後方交会、面積測定)
【座標】	:	座標測定
【杭打】	:	杭打ち測定
【オフセット】	:	オフセット測定
【オフセット角度】	:	オフセット角度測定
【オフセット距離】	:	オフセット距離測定
【オフセット2点】	:	オフセット2点測定
【対辺】	:	対辺測定
[REM]	:	REM 測定
【後方交会】	:	後方交会
【面積】	:	面積計算
【設定】	:	杭打ち精度を設定する(②、③のみ割り付け可能)
【H 旋回】	:	水平角を指定の角度まで回転。杭打ち測定時は水平角を杭打ち 目標の角度まで回転(②③のみ割り付け可能)
[SHVR]	:	杭打ち画面の距離モードの切り替え(大文字になっているの が、選択されている方法。S:斜距離、H:水平距離、V:高低 差、R:REM 高)(②のみ割り付け可能)
[OK]	:	選択した杭打ち点の杭打ち測定を終了して<座標登録>に戻 る。測定を終了した杭打ち点はリストから削除(③のみ割り付 け可能)

▶ 手順 ソフトキーの割り付け

ソフトキー設定メニューに入る
 <設定>で「カスタマイズ」を選択します。

変更したい画面を選択して、「ソフトキー」を 選択します。

2. 変更したいタブを選択する

変更したいタブを選択します。現在、各ページに割り付けられているソフトキーが表示されます。

3. 割り付けを変更するキーを選択する

割り付けを変更するソフトキーを選択します。 ソフトキーをタップすると、割り付けの選択 肢が一覧表示されます。ソフトキーにカーソ ルがある状態では、全角モードを OFF にして (S.P.)を選択すると、割り付けの選択肢が一 覧表示されます。

カスタマイス* ソフトキー/観測						(
ſ	Y7トキーー!	覧			×	Γ
		測定	0セット	任意角		ŀ
	SHV	R/I	ZA/%	ホールト		l
	呼出	HVアウトS	HVD7לאל	XYZアウトS		l
	HVアウトT	HVDアウトT	XYZアウトT	高さ		l
	光量	チルト	モーター	反転		l
	サーチ	定速旋回	EDM	אבֿב⊬	-	Ļ
				ОК		1

4. 割り付けを変更する

<ソフトキー一覧>から、割り付けをしたい ソフトキーを選択します。 指定したソフトキーが、指定した位置に割り 付けられます。

- 次に割り付けるキーを選択する
 手順2~4と同様に、割り付け作業を繰り返します。
- 6. キー割り付けを終了する

すべてのソフトキーの割り付けが終わったら、 【OK】を押します。割り付けが記憶され、< メニュー>に戻ります。割り付けをした画面 では、新しい割り付けで機能が表示されます。

19.7 スターキーモードのユーザー割り付け

スターキーモードのアイコンの配列を、測定条件や作業者の使い勝手に合わせて設定できま す。

- ・ 設定した表示項目は、電源を OFF にしても次に変更するまで保存されます。
- ・ 設定を元に戻すには、「表示項目の変更 手順1」の、<画面選択>で【クリア】を選択 します。タブ、画面、およびソフトキーの設定も元に戻ります。

4

- 表示項目を変更、登録すると、それ以前に記憶されていた設定は消去されます。
- スターキーモードの表示項目を変更すると、ステータスバーのアイコンも連動して変更されます。

表示項目

バッテリー残量 ターゲットタイプ モーター駆動 レーザー照準/ガイドライト 傾斜角自動補正 通信状態 入力モード 文字入力パネル PPM 設定(気象補正係数) タッチパネル ディスク容量 表示なし

▶ 手順 表示項目の変更

表示項目の設定メニューに入る
 <設定>で「カスタマイズ」を選択して、「スターキーモード」を選択します。

2. 割り付けを変更するアイコンを選択する 割り付けを変更するアイコンを選択します。 アイコンをタップすると、割り付けの選択肢 が一覧表示されます。

3. 割り付けを変更する

<スターキー一覧>から、割り付けをしたい アイコンを選択します。 指定したアイコンが、指定した位置に割り付 けられます。

- 次に割り付けるアイコンを選択する 手順2~3と同様に、割り付け作業を繰り返 します。
- アイコンの割り付けを終了する すべてのアイコンの割り付けが終わったら、 (ENT)を押します。割り付けが記憶され、< 画面選択>に戻ります。スターキーモードに 入ると新しい割り付けで表示されます。

19.8 単位

設定項目と選択肢(*:工場出荷時の設定)

気圧単位

∶hPa *** ∕** mmHg

19.9 パスワード

パスワードを設定することで大切な測定データなどを守ることができます。 工場出荷時は、パスワードは設定されていません。初めてパスワードを設定するときは、「古 いパスワード」には入力する必要がありません。

パスワードを設定すると電源 ON 時にパスワード入力画面が表示されます。パスワードを入力してください。

・ 3~16 桁まで入力できます。入力した値は「***・・・」と表示されます。

・ パスワードを解除したいときは、新しいパスワードには何も入力しないでください。

4

- ・ パスワードの設定はイニシャライズ処理をしても解除されません。
- パスワードの設定をしていると、外部機器からの電源 ON 後にパスワードの入力が必要です。

【『 8.3 外部機器からの電源 ON / OFF」

パスワード設定		×
古しいパスワード		477
		0
		۲
新していてスワート		
		<u>_</u>
新しいパスワードの確認入力		.
		_1
		\mathbf{P}
	OK	

設定項目

古いパスワード : 設定されているパスワードを入力 新しいパスワード : 新しく設定するパスワードを入力 新しいパスワードの確認入力 : もう一度新しく設定するパスワードを入力

19.10日付 ・時間

設定項目

- 日付 :「▼」を押してカレンダーを表示させて日付を選択します。または、直接数 値を入力します
- 時間 :「▲」「▼」を押して設定します。
 (S.P.)を押すと数値が1増加します。

19.11 設定のデフォルト復帰

設定内容を工場出荷時の設定に戻すには、イニシャライズ処理を行います。イニシャライズ 処理をしてもプログラム モードの現場データは保持されますが、できるだけイニシャライズ 前にデータをコンピューターに転送してください。

4

- ・ パスワードの設定は、イニシャライズ処理をしても解除されません。
- ・ イニシャライズ処理をすると、レジューム機能は解除されます。

▶ 手順

- 1. [☆]、(S.P.) を同時に押しながら、(①) を押す "All Settings will be cleared. Are you sure?"が表示されます。
- 2.「Yes」を選択して(ENT)を押す
 - ・イニシャライズを取りやめるときは「No」を選択して(ENT)を押すか、(ESC)を押 します。
- タッチパネルの調整をする イニシャライズ処理を行った後、電源を ON にすると、タッチパネルの調整画面が表示 されます。

 「了「8.] タッチパネルの調整」

20. 警告・エラーメッセージ

本機で表示される警告・エラーメッセージと、その原因を示します。同じ表示が繰り返し表 示される場合や下記以外の表示がで出た場合は、本機の故障が考えられます。最寄りの営業 担当へご連絡ください。

アドレスは16進文字列(0~9、A~F)12文字で入力してください。

*Bluetooth*通信をする際に、*Bluetooth*アドレスの入力が正しくなかった。 *Bluetooth*アドレスは、0 ~ 9 または A ~ F までの 12 文字で入力してください。

オーバーレンジ

勾配%表示の際、表示範囲(±1000%未満)を越えた。 REM 測定で鉛直角が水平±89°を越えたか、または、測った距離が9999.999mを越えた。

目標点から離れた点に器械点を設置してください。

温度範囲外

使用温度範囲外。 適切な使用温度範囲内で使用してください。

計算エラー‼

後方交会で同一既知点を複数回登録した。 既知点座標が重複しないように他の既知点を設定してください。

面積計算で計算条件が満たされないため計算できなかった。 計算条件を確認の上、再度測定を行ってください。

原点を測定してください。

対辺測定で原点の測定が正常に終了していない。 原点を正確に視準して、再測定してください。

これ以上デバイスを登録できません。

Bluetooth通信をする際に、通信機器の登録制限数を越えた。 不要な登録デバイスを削除してから再度登録してください。

座標が登録されていません。

座標杭打ちで、座標が登録されていない。 座標の登録をしてください。

視準エラー

プリズムの測定条件が悪い。 もう一度プリズムの設置状態を確認し、再測定してください。

受光エラー

ノンプリズム設定時で距離測定の条件が悪い。ノンプリズム設定時で測距光が同時に 2 つ以上の面に当たっているため測距できない。

同一面に測距光が当たるような部分を、ターゲット面として選択してください。

信号なし

距離測定を開始したとき、反射光が検出されない。または測定中に反射光が弱くなったか 遮断された。

ターゲットを視準し直すか、反射プリズムの場合は反射プリズムの数を増やしてください。

精度不良

後方交会で器械点座標の計算が収束しない。 結果を判断し、必要ならば再度測定を行ってください。

ターゲットが見つかりません !!

サーチ範囲内にプリズムが見つからなかった。 もう一度プリズムの設置状態を確認し、再測定してください。

タイムアウト !!

距離測定時に、一定時間内に測距できなかった。 もう一度プリズムの設置状態を確認し、再測定してください。

指定角旋回時やプリズムの自動視準時などに、本機やプリズムの状態が悪く、一定時間内 に動作を完了できなかった。

もう一度機械やプリズムの設置状態を確認し、再測定してください。

それでもうまくいかない場合は、目視での視準に切り替えてください。

チルトオーバー

測定中、本機の傾きが傾斜角補正の範囲を越えた。 整準し直してください。

デバイス名を入力してください。

Bluetooth通信をする際に、通信機器の登録でデバイス名が未入力だった。 デバイス名を入力して登録してください。

時計エラー!!

残量のないバッテリーを装着したまま電源を ON にした場合などで、一時的にリチウム 電池の働きに異常が発生した。

ー時的なリチウム電池の異常により年月日時間の表示が正しくなくなった場合は再度日 付・時間の設定を行ってください。

電源 ON のたびにメッセージが表示されるときは、リチウム電池の交換が必要です。電 池の交換については最寄りの営業担当までご連絡ください。

パスワードが一致しません。

新しいパスワードとその確認入力のパスワードが異なる。 同じパスワードを入力してください。

パスワードが違います。

設定されたパスワードと異なっている。

パスワードは3文字以上で設定してください。

パスワードが3文字未満だったため、設定されなかった。 3文字以上のパスワードを入力してください。

プリズムを観測してください。

REM 測定でターゲットの測定が正常に終了していない。 ターゲットを正確に視準して、再測定してください。

古いパスワードが正しくありません。

設定されたパスワードと異なっている。 設定したパスワードを確認の上、再度パスワードを入力してください。

望遠鏡が天底を向いている時はサーチできません!!

自動視準時に望遠鏡の位置が天底を向いていてサーチできなかった。 望遠鏡の位置を自動視準可能角度範囲内に設定して、再測定してください。

モーターエラー Exxx

モーター駆動部になんらかの問題があったため、停止した。 電源 ON し直すことで、エラーがなくなる場合もあります。 頻繁にメッセージが出る場合は、最寄りの営業担当までご連絡ください。

Error: Read Build Info. Error: Read JOG Setting Error: Read OS Parameter Error: Read sysflg Error: Self check

Error: Write sysflg

【OK】を押して、メッセージを解除してください。メッセージが頻繁に表示される場合 は、最寄りの営業担当にご連絡ください。

21. 点検・調整

本機は、微妙な調整を必要とする精密機器です。常に正確な測定を行うには、定期的な点検・調整が必要です。

- ・ 点検・調整は、必ず「21.1 円形気泡管」から「21.8 レーザー求心(オプション)」の順番で 行ってください。
- 長期の保管後や運搬後、使用中に強いショックなどを受けたと思われる場合は、特に注意して必ず点検・調整を行ってください。
- ・ 点検と調整は、機械の設置が安定している環境で行ってください。

21.1 円形気泡管

整準作業で円形気泡管の気泡にずれが生じる場合は以下の手順で調整を行ってください。

4

調整ねじは締め付けすぎないよう、締め付け力がどのねじも同量になるようご注意ください。

▶ 手 順 点検と調整

画面表示を見ながら整準する
 「ア 7.2 整準作業」

備考

・ステータスバーやスターキーモードの傾斜
 角自動補正アイコン
 をタップすると、
 電子気泡管を表示させることができます。

4

・電子気泡管がずれていると円形気泡管を正 しく調整できません。 ℃了「21.2 電子気泡管」

2. 円形気泡管の気泡の位置を確認する

℃了「「7.2 整準作業」手順1~2」 気泡が中央からずれていなければ調整は不要 です。 気泡が中央からずれている場合は、次の調整 を行ってください。

 調整ねじをゆるめて気泡を中央に入れる まず、ずれ方向を確認します。
 調整ピンを使い、気泡のずれた方向と反対側 にある円形気泡管調整ねじをゆるめて気泡を 中央に入れます。

円形気泡管調整ねじ

4. 調整ねじを締める

3つの調整ねじの締め付け力が同量になるようにねじを締め、気泡を円の中央に合わせます。

21.2 電子気泡管

何らかの理由により、電子気泡管の傾斜角0°を示す位置(電子気泡管の0点)がずれた場合は、本機が正しく整準されても傾斜角が0°とならず、角度測定の精度に影響をおよぼします。

電子気泡管の0点のずれは、以下の手順で消去することができます。

▶ 手順 点検・調整

- 1. 気泡管の点検・調整を行うか、または注意 深く本機を整準する
- 2. 機械定数メニューに入る 設定モードで「器械定数」を選択します。

設定		×
🔡 1.観測条件	⊿ 6.単位	
❷ 2.器械	😫 ७.७२७२४२	۳
C 3.器械定数	S.N*スワート*	
♣ 4.EDM	像 9. . –9–	.
🜻 5.通信	❷ 0.日付時刻	
	戻る	

- 3. チルトオフセットメニューに入る 「チルトオフセット」を選択します。
- □ 1.チルトオフセット
 □ 1.チルトオフセット
 □ 0
 ① 0
 ① 0
 ① 0
 ① 0
 ① 0
 ① 0
 ① 0
 ① 0
 ① 0
 ① 0
 ① 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</l
- 4. チルト X / Y 傾斜角が±1'以内に入るように整準後、表示が安定するまで数秒待ち、現在の X 方向(視準方向)の傾斜角、 Y 方向(横軸方向)の傾斜角を読み取る
- チルトオフセット 測定 × 17 正データセット 0 チルトX 0'32" **(**@) チルトY -0'26" 1 * 82'15'20" <u>الاً، ا</u> 鉛直角 _1 水平角 1*36'40" 7 OK
- 本機を180°回転させる
 【OK】を押します。現在の位置から本機が自動的に180°回転します。
- 6. 表示が安定するまで数秒待ち、傾斜角 X2・ Y2 を読みとる

 7. そのままの状態で以下のオフセット値(電子気泡管の0点のずれ量)を計算する Xoffset = (X1 + X2) / 2 Yoffset = (Y1 + Y2) / 2 オフセット値(Xoffset・Yoffset)のどちら か一方でも±10"を越えている場合は、以下 の手順で調整してください。
 範囲内の場合は、調整は不要です。(ESC)を 押して<器械定数>に戻ります。

チルトオフセット - 測定		×
反データセット		
<i><i>μμ</i></i>	-0'03"	0 () ()
FULY	-0'50"	
		1
鉛直角	82*15'20"	
水平角	180*24'10"	_1 🗩
	ОК	

本機を180°回転させる
 【OK】を押します。本機が自動的に180°回転します。

9. 調整範囲内であるか確認する 測定結果による傾斜補正量(新値)が両 方とも現在値±1′以内ならば、【はい】 を押して、傾斜補正量を更新します。 チルトオフセット>に戻ります。手順11 に進みます。 範囲を越えている場合は、【いいえ】を押 して調整を中止し、最寄りの営業担当に ご連絡ください。画面は<器械定数>に 戻ります。

求点の測定結果

チルトオフセット - 結果		×
- 現在値		
チルトX	0'07'17"	0
FULY	0*07'23"	۱
新値		
FULX	0*07'42"	Ľ
FILLY	0*07'47"	9.0
		_1
		7
はい	いいえ	

オフセット点の測定結果

▶ 手順 再点検

- **10.チルトオフセットメニューに入る** 「チルトオフセット」を選択します。
- 11.表示が安定するまで数秒待ち、傾斜角 X3・ Y3 を読みとる
- **12.本機を180[°]回転させる** 【OK】を押します。本機が自動的に180[°]回 転します。
- 13.表示が安定するまで数秒待ち、傾斜角 X4・ Y4 を読みとる
- 14.そのままの状態で以下のオフセット値を計 算する Xoffset = (X3 + X4) / 2 Yoffset = (Y3 + Y4) / 2

オフセット値が両方とも±10"以内であれば 調整は終了です。(ESC)を押して、<器械定 数>に戻ります。

オフセット値がどちらか一方でも± 10" を越 えている場合は、もう一度最初から点検・調 整を行います。 調整を繰り返しても計算値が± 10" 以内にな らない場合は、最寄りの営業担当にご連絡く ださい。

21.3 コリメーション

コリメーションのオフセット量を、測定することができます。オフセット量の測定により、 正・反いずれかの測定でのずれ量を補正することができます。オフセット量の補正は、以下 の手順で行います。

4

・ 調整は、日差しが弱く、ゆらぎのない環境で行ってください。

▶ 手順 調整

- 1. 本機を注意深く整準する
- 本機から約 100m 離れてほぼ水平方向に ターゲットを据え付ける
- 機械定数メニューに入る 設定モードで「器械定数」を選択します。

4. コリメーションメニューに入る 「コリメーション」を選択します。

器械定 動設定	×
1.チルトオフセット	
国 2.コリメーション	
3.イメーシャセンサー-十字線オフセッ	⊦ <mark>.1</mark>
	戻る

5. 望遠鏡「正」でターゲットの中心を正確に 視準する

ターゲットを視準して【OK】を押します。本 機が自動的に180°回転します。

4

- ・モーター駆動中に接眼レンズに目を近づけたりしないでください。目にケガをしたりする恐れがあります。
- 6. 望遠鏡を「反」にし、ターゲットの中心を 正確に視準する ターゲットを視準して、【OK】を押します。 鉛直角に角度が表示されます。

コリメーション - 測定			×
反データセット			17
		I	0
		!·	۲
			1
鉛直角	275 * 2	5'50"	
水平角	182 ' 4	9'40"	_1
			\checkmark
		OK	

7. オフセット量を補正する

【はい】を押してオフセット量を補正します。 【いいえ】を押すと、測定したオフセット値は 破棄されます。

コリメーション - 結果		×
EL	0*00'01"	•77
Vオフセット	0*00'03"	U 0
		•
		1
		.
		_1
(H) >		_
ほい	いいえ	

21.4 望遠鏡十字線

望遠鏡十字線に、傾きやずれがないか点検します。

4

・ 望遠鏡十字線の点検では、ターゲットの視準は目視で行ってください。

▶ 手 順 点検 1 望遠鏡十字線の傾き

- 1. 本機を注意深く整準する
- 2. 明瞭に見える目標点(例えば屋根の先端) を十字線の A 点に合わせる

3. 望遠鏡微動つまみで静かに望遠鏡を動かし て、目標点を縦線上のB点へ移動させる このとき目標点が縦線に沿って平行移動すれ ば調整は不要です。 縦線からずれて移動した場合は、最寄りの営 業担当にご連絡ください。

▶ 手 順 点検 2 望遠鏡十字線の位置

4

- ・ 点検は、日差しが弱く、ゆらぎのない環境で行ってください。
 ・ 点検は<観測条件設定>の「傾斜角補正」の設定を「あり(H、V)」に、「コリメーション補正」の設定を「あり」にして行ってください。
 - 【了「19.1 観測条件」
- 1. 注意深く本機を整準する
- 本機から約 100m 離れてほぼ水平方向に ターゲットを据え付ける

 観測モードで、望遠鏡「正」でターゲット の中心を視準して水平角 A1 と鉛直角 B1 を読み取る 例: 水平角 A1 = 18°34′00″ 鉛直角 B1 = 90°30′20″

4. 望遠鏡を「反」にし、ターゲットの中心を 正確に視準して水平角 A2 と鉛直角 B2 を 読み取る 例: 水平角 A2 = 198°34′20″ 鉛直角 B2 = 269°30′00″

5. A2 - A1 と B2 + B1 を計算する A2 - A1 が 180° ± 20″以内 B2 + B1 が

360° ± 20″以内にあれば、調整は不要で す。 例: A2 - A1 (水平角) = 198° 34′ 20″ - 18° 34′ 00″ = 180° 00′ 20″ B2 + B1 (鉛直角) = 269° 30′ 00″ + 90° 30′ 20″ = 360° 00′ 20″

2~3回点検を繰り返しても誤差が大きい場 合は、「21.2 電子気泡管」と「21.3 コリメー ション」の点検・調整が済んでいるかご確認く ださい。 それでも結果が変わらない場合は最寄りの営

業担当にご連絡ください。

21.5 イメージセンサー

自動視準には本機内部のイメージセンサーが使われています。望遠鏡十字線とイメージセン サーの位置を補正するためにオフセット値があらかじめ設定されていますが、何らかの理由 により、望遠鏡十字線とイメージセンサーの位置がずれた場合は、プリズムの中心を正しく 自動視準できません。オフセット値は、以下の手順で再設定することができます。

4

- ・ 点検と調整は、日差しが弱く、ゆらぎのない環境で行ってください。
- 測定結果によるオフセット値が表示されるのに、最大で20秒ほどかかる場合があります。
- プリズムは、標準反射プリズムのプリズム2型をお使いください。その他のプリズムでは、正しく調整できない場合があります。

▶ 手順 点検と調整

- 1. 注意深く本機を整準する
- 本機から約 50m 離れてほぼ水平方向にプ リズムを据え付ける
- 機械定数メニューに入る 設定モードで「器械定数」を選択します。

イメージセンサー - 十字線オフセットメニューに入る
 「イメージセンサー - 十字線オフセット」を選択します。

7

X

0 🚺

(**@**)

1.*

1

..1

7

0'00'35"

-0'00'25"

0'00'15"

0'00'05"

いいえ

- 5. プリズムの中心を正確に目視で視準する ご了「「10.3 目視によるターゲット視準」」
- 6.【OK】を押す

測定を中断するには、【停止】を押します。

イメージセンサー・十字線打セット - 結果

現在値日

現在値 V

新佰 日

新值V

はい

測定結果によるオフセット値

7. オフセット値を確認する

設定されているオフセット値(現在値H、 V)と測定結果によるオフセット値(新値 H、V)が表示されます。オフセット値と は、望遠鏡十字線の中心からイメージセ ンサーの中心がどの程度ずれているかの 内部定数です。

設定されているオフセット値より測定結 果によるオフセット値が著しく大きい場 合は【いいえ】を押して再度点検してく ださい。再度の測定結果によるオフセッ ト値(H、V)のそれぞれが毎回ほぼ同じ 値になる場合は、調整が必要です。手順8 に進みます。

測定結果によるオフセット値が限度値を 超える場合は、エラー表示となります。 最寄りの営業担当までお問い合わせくだ さい。

8. オフセット値を更新する 【はい】を押してオフセット値を更新しま す。

▶ 手順 再点検

4

- イメージセンサーの再点検では、自動視準機能を使ってプリズムの視準をしてください。
- ・ 点検は<観測条件設定>の「傾斜角補正」の設定を「あり(H、V)」に、「コリメーション補正」の設定を「あり」にして行ってください。
 「デ「19.1 観測条件」
- 注意深く本機を整準する

 本機から約 50m 離れてほぼ水平方向にプ リズムを据え付ける

- 観測モードで、望遠鏡「正」でプリズムの 中心を視準して水平角 A1 と鉛直角 B1 を 読み取る 例: 水平角 A1 = 18°34′00″ 鉛直角 B1 = 90°30′20″
- 4. 望遠鏡を「反」にし、プリズムの中心を視準して水平角 A2 と鉛直角 B2 を読み取る例:
 水平角 A2 = 198°34′20″
 鉛直角 B2 = 269°30′00″
- 5. A2 A1 と B2 + B1 を計算する

A2 - A1 が 180° ± 20″以内、B2 + B1 が 360° ± 20″以内にあれば、調整は不要 です。 例: A2 - A1 (水平角) = 198° 34′ 20″ - 18° 34′ 00″ = 180° 00′ 20″ B2 + B1 (鉛直角) = 269° 30′ 00″ + 90° 30′ 20″ = 360° 00′ 20″

2~3回点検を繰り返しても誤差が大きい場 合は、「21.2 電子気泡管」と「21.3 コリメー ション」の点検・調整が済んでいるかご確認く ださい。 それでも結果が変わらない場合は、最寄りの

営業担当にご連絡ください。

21.6 求心望遠鏡

4

調整ねじは締め付けすぎないよう、どのねじも締め付け力が同量になるようご注意ください。

▶ 手順 点検

- 1. 本機を注意深く整準し、求心望遠鏡で正確 に測点を求心する
- 2. 本体上部を180°回転させ、求心望遠鏡の 二重丸と測点の位置を確認する 測点が二重丸の中央からずれていなければ調 整は不要です。 測点が二重丸の中央からずれている場合は、 次の調整を行ってください。

▶ 手順 調整

3. ずれ量の半分を整準ねじで修正する

5. 残りのずれ量を求心望遠鏡についている4本の調整ねじで修正する 測点が図の下半分(上半分)にある場合は、 上(下)の調整ねじを少しゆるめ、 下(上)の調整ねじを同量だけ締めて 求心望遠鏡の中心の真下に測点が来るようにします。 (図の線上に来るようにします。)

測点が、図の実線(点線)上にある場合は、 右(左)の調整ねじを少しゆるめ、 左(右)の調整ねじを同量だけ締めて 求心望遠鏡の中心に測点が来るようにします。

- 本体上部を回転しても、測点が求心望遠鏡の二重丸の中央からずれていないことを確認する
 必要ならばもう一度調整し直します。
- 7. 求心望遠鏡焦点鏡カバーを取り付ける

21.7 測距定数

測距定数 K は出荷検査時に O に調整されています。測距定数はほとんど狂いませんが、万 一、ご使用中に測定値が常に同量の誤差を含む場合や、年に数回は、測距定数 K が O 近くで あることを確認してください。点検は、距離精度の明確な基線を使うか、次の方法で行いま す。

4

- 本機とターゲットの設置誤差や視準誤差は、求める測距定数に影響を及ぼします。これらの誤差がないよう、十分ご注意ください。
- ・ 器械高と視準高が同じ高さになるように設置してください。平坦な場所がない場合には、 自動レベルを使用して、同じ高さにします。

▶ 手 順 点検

 本機と反射ターゲットを設置する 約100mの距離をとることのできる平坦な場所を探し、本機を据え付けた位置をA点とし、約100m離して反射プリズムを据え付けてB点とします。ABの中間をC点とします。

精密測定で水平距離 AB を 10 回測定し、
 平均値を求める

3. C 点に本機を、A 点に反射ターゲットを据 え付ける

- 4. 精密測定で水平距離 CA と CB をそれぞれ 10回測定し、それぞれ平均値を求める
- 5. 測距定数 K を計算する 計算式: K = AB - (CA + CB)
- 手順の1~5を2~3回繰り返す
 測距定数Kが±3mm以内であれば、調整は 不要です。
 この範囲を越えた場合は、最寄りの営業担当 にご連絡ください。

21.8 レーザー求心(オプション)

点検・調整は、調整用ターゲットを使用して行います。調整用ターゲットは次ページの図を 拡大(または縮小)コピーして作成してください。

▶ 手 順 点検

- 本機を整準して、レーザー求心光を ON に する 『ア 「7.2 整準作業」
- 本体上部を水平方向に回転させ、レーザー 求心光の回転中心がターゲットの中心とな るようにターゲットを置く
 - ・レーザー求心光が十字線の中央からずれて いなければ調整不要です。
 - ・レーザー求心光が中央からずれている場合 は、次の調整を行ってください。 円の外側で軌跡を描くような場合は、最寄 りの営業担当にご相談ください。

▶ 手 順 調整

 調整ねじキャップを反時計回りに回して、 取りはずす

- 2. レーザー求心光を ON にする
- 3. 在のレーザー求心光の位置(イ)を確認す る
- 本体上部を180°回転させ、レーザー求心 光の位置(ロ)を確認する
 2点のレーザー求心光位置を結んだ中央に レーザー求心光がくるように調整をします。
- 5. 調整の目標位置を確認する

目標位置にターゲットの中心を合わせてター ゲットを置きます。 ずれ量は4つの微調整ねじで調整します。

4

- ・微調整ねじは締め付けすぎないようにして ください。
- ・調整ねじは時計方向に回すと締め付けます。

6. 上下方向の調整をする

レーザー求心光が図の上半分(下半分)にあ る場合は、

- 上と下の微調整ねじに、それぞれ1本ず つ六角棒スパナを使用します。
- ② 上(下)の微調整ねじを少しゆるめ、下 (上)の微調整ねじを同量だけ締めます。 レーザー求心光がターゲットの横線上に 来るようにします。

調整目標位置

7. 左右方向の調整をする

レーザー求心光が図の右半分(左半分)にあ る場合は、

- 右と左の微調整ねじに、それぞれ1本ず つ六角棒スパナを使用します。
- ② 右(左)の微調整ねじを少しゆるめ、左 (右)の微調整ねじを同量だけ締めます。 レーザー求心光がターゲットの十字線の 中央へくるようにします。
- 8. 本体上部を水平に回転させ、レーザー求心 光の位置を確認する レーザー求心光がターゲットの十字線からず れないことを確認してください。
- 9. 調整ねじキャップを取り付ける

備考

・ 微調整ねじを正面に向けたとき、ねじを締めるとレーザー光は下記の方向へ移動します。

22. 電源システム

本機の電源は以下のような組み合わせでご使用ください。

4

- 以下の組み合わせ以外では絶対に使用しないでください。機械が破損するおそれがあります。
- バッテリーや充電器を使用するときは、それぞれの取扱説明書をよく読んでお使いください。

*がついているものは標準付属品です。その他は特別付属品です。

備考

- 本機をお使いになる国や地域により、適応する電源ケーブルが異なります。詳しくは営業 担当にお問い合わせください。
- Y ケーブルは、外部電源入力と RS232C 通信(D-sub9 ピン)を同時に行うためのケー ブルです。

● 外部電源

- ・外部バッテリー を使用する時は、機械のバランスを保つため、BDC70 を装着した状態 で使用してください。
- ・EDC115 を使用するときは、車のエンジンをかけたままの状態にしてください。また、 DC12V でマイナス側がアースのものを使用してください。
- ・EDC213 を使用するときは、必ず車のエンジンを止めた状態にしてください。赤いク リップを DC12V バッテリーのプラス側に、黒いクリップをマイナス側に接続してくだ さい。

23. プリズムシステム

- プリズムアダプター 3WP 型、S2 型、および F1WP 型は、プラグ 3 型を使用することに より、本シリーズと高さを合わせることができます。プリズムユニットの高さ調整は、プ リズムアダプターのビスの固定位置を変えることにより行います。(2 段階の調整になっ ていますが、本シリーズには全高が一番低くなるところにします。)
- ・ 多角測量を行う場合、プリズム側に用いる整準台は TR-101/111 をご使用ください。

24. 特別付属品

以下の製品は別売りの特別付属品です。

【♪ 電源とターゲットの特別付属品「21.8 電源システム」、「21.8 プリズムシステム」

▶ 垂球

風のない日は付属の垂球による据え付け・求 心作業も行うことができます。垂球について いる紐を伸ばして図のようにS字型に通し、 適当な長さにして定心かんについているフッ クにつるしてご使用ください。

●棒磁石(CP7)

棒磁石取り付け部に、棒磁石を差し込んで、 クランプねじをゆるめてから、本体上部を回 して指針を指標の間に挟み込むようにします。 この位置で望遠鏡正位の視準方向が磁北の目 安となります。使用後は、クランプねじを締 め、棒磁石を取り付け部からはずしてください。

4

・棒磁石は、周囲の磁気や金属の影響を受け ますので、正確な磁北を決定することはで きません。棒磁石が示す磁北を測量の際の 基準として使用しないでください。

接眼レンズ(EL7)

倍率:40倍 視野:1°20'

● ダイアゴナルアイピース(DE27)

ダイアゴナルアイピースは、天頂付近の観測、 狭い場所での観測に便利です。 倍率:30倍 本機の本体ハンドルをはずしてから、取り付 けつまみをゆるめて望遠鏡接眼レンズをはず します。ダイアゴナルアイピースをねじ込ん で取り付けます。

の「ハンドルの取りはずし/取り付け」

4

・ダイアゴナルアイピースを取り付けると、 望遠鏡は 1 回転しません。望遠鏡が機械に 接触しないようにご注意ください。

▶ 太陽フィルター(OF3A)

太陽観測などまぶしい目標を視準する場合に 観測者の目と機械の内部を保護するため、対 物レンズに取り付けます。取り付けたまま フィルター部分をはね上げることができます。

4

・太陽フィルターを取り付けると、望遠鏡は1
 回転しません。望遠鏡が機械に接触しないようにご注意ください。

) 電源ケーブル/インターフェースケーブル ホストコンピューターと本機を接続するケーブルです。

ケーブル	備考
DOC210	ピン No. および信号レベル:RS232C 規格準拠
EDC211 (Y ケーブル)	D-Sub コネクター:9pin メス
EDC212 (Y ケーブル)	

備考

・Y ケーブルは、外部電源入力と RS232C 通信(D-Sub9 ピン)を同時に行うための ケーブルです。

● 反射シート(RS シリーズ)

25.仕様

「DS-103AC/105AC」の記述のないものは共通です。

望遠鏡

全長 有効径 倍率 像 分解力 視野 最短合焦距離 合焦装置 十字線照明装置(明るさ)	168mm 45mm (EDM:50mm) 30倍 正像 2.5″ 1°30′ (26m/1,000m) 1.3m 1 スピード 5 段階調整
測角部 測定方式 検出方式	アブソリュート・ロータリーエンコーダー方式
DS-103AC: DS-105AC: 星小表示	対向検出 片側検出
DS-103AC: DS-105AC: 塘座	1″ /5″ 5″ /10″
DS-103AC : DS-105AC :	3″ 5″ (IIS B 7912-3 : 2006) (ISIMA 101 : 2002)
コリメーション補正 測角モード	あり/なし(選択可)
水平角 鉛直角	右回り/左回り(選択可) 天頂 0゜/水平 0゜/水平± 90゜(選択可)、勾配 (%)
傾斜補正部	
万式 景小表示	液体式(2 軸) 1″
傾斜補正範囲	± 6′
傾斜補正モード	鉛直角と水平角を補正/鉛直角のみを補正/補正なし (選択可)

チルトオフセット

変更可

測距部	
測定方式	位相差測定方式
光源	赤色レーザーダイオード 690nm
	クラス 3R(JIS C 6802:2014)
	(プリズム・反射シート設定時の射出量はクラス1相当
* •	JIS C 6802 : 2014)
測定可能範囲*9	(当社製反射プリズム・反射ターゲット使用、気象条件通
	常時* / ()内は気象条件良好時* 4)
360° プリズム ATP1/ATP1S	$1.3 \sim 1000 \text{m}^{+3}$
プリズム5型	: 1.3 ~ 500m * ′
プリズム2型×1	$1.3 \sim 5,000 \text{m}^{+7}$
	(~ 6,000m) [★] ′
ノリスム2型×3	$2 \sim 8,000 \text{ m}^{-1}$
	$(\sim 10,000 \text{m})^{+1}$
反射シート RS90N-K	$1.3 \sim 500 \text{m}^{-1}$
反射シート KS50IN-K	$1.3 \sim 300 \text{m}^{-1}$
反射シート KSTUN-K	$1.3 \sim 100 \text{m}^{-1}$
ノノノリスム (日巴山)	$(0.5 \sim 600 \text{ m}) * 6$
プロブル (トラッキング測定時	(*************************************
ノノスム (ドノノインノ)別足向	$^{\prime}$ 13 ~ 1000m
反射シート(トラッキング測定	·····································
	· 1 3 ~ 350m
ノンプリズム(白色面)(トラ、	ッキング測定時) *5
	$0.3 \sim 300 \text{m}$
最小表示	
精密測定	0.0001m/0.001m
高速測定	0.001m
トラッキング測定	001m
最大斜距離表示(トラッキング測	定をのぞく)
	12.000.000m(プリズム・反射シート測定時)
	1,200.000m(ノンプリズム(白色面・灰色面)測定時)
精度(D は測定距離、単位は mm) (気象条件通常時*1) *7、*9
(プリズム使用時、ただし 360゜	['] プリズム ATP1/ATP1S 使用時は「 *³」 の条件):
精密測定	: (1.5 + 2ppm × D) mm
高速測定	$(5 + 2ppm \times D) mm$
(反射シート使用時) * 4	
精密測定	: (2 + 2ppm × D) mm
高速測定	$(5 + 2ppm \times D) mm$
(ノンプリ(白色面)使用時) ^{*}	\$ 5
精密測定	: (2 + 2ppm × D) mm (0.3 ~ 200m) *8
	(5 + 10ppm × D) mm (200 超~ 350m)
	(10 + 10ppm × D) mm (350 超~ 1,000m)
高速測定	: (6 + 2ppm × D) mm (0.3 ~ 200m)
	(8 + 10ppm × D)mm(200 超~ 350m)
	(15 + 10ppm × D) mm(350 超~ 1,000m)
(JIS B 7912-4 : 2006)	••

観測モード	精密連続測定/精密平均測定/精密単回測定/高速単回
	測定/高速連続測定/トラッキング測定(選択可)
測定時間(気象条件良好時 * 2、	補正なし,斜距離,絞り適正時の最短測定時間)
精密測定	:初回 1.5 秒以下、その後 0.9 秒以下
高速測定	:初回 1.3 秒以下、その後 0.6 秒以下
トラッキング測定	:初回 1.3 秒以下、その後 0.4 秒以下
気象補正	
気温入力範囲	:- 30 ~ 60 ℃(0.1 ℃単位)
気圧入力範囲	:500 ~ 1400hPa(0.1hPa 単位)
	375 ~ 1050mmHg(0.1mmHg 単位)
ppm 入力範囲	:— 499 ~ 499ppm(0.1ppm 単位)
プリズム定数補正	- 99 ~ 99mm(0.1mm 単位)
球差・気差補正	なし/あり(K = 0.142)/あり(K = 0.20)(選択可)

- *1:気象条件通常時:もやがわずかで視程が約20km、適度な日差しで、かげろうが弱い
- *2:気象条件良好時:もやがなく視程が約40km、くもっていてかげろうがない
- * ³ : 測距光が 360°プリズムに対し上下 15°以内で当たっていて、プリズム正対時の 値です。
- *⁴:測定可能範囲は、測距光が反射シートに対し上下左右 30[°]以内で当たっている時の 値です。
- *5: 測定可能範囲および測定精度は、KODAK Gray Card の白色面(反射率 90%)、測 定面照度が 5,000lx 以下の場合
- *6: 測定可能範囲および測定精度は、KODAK Gray Card の白色面(反射率 90%)測定 面照度が 500lx 以下の場合
- *7:10m以下の測定ではプリズムと正対させること
- *8:距離測定 0.3~0.66m では(5 + 2ppm × D)mm
- *9:測定対象物、気象条件、観測条件などにより変わることがあります。

自動視準部

方式	同軸光学系,画像演算処理方式
送光光源	赤外レーザーダイオード(波長:980nm)
	クラス1(JIS C 6802:2014)
受光視野角	± 45′
自動視準可能角度範囲	水平方向:360°(全周)
	鉛直方向仰角 90° (ハンドル装着時:70°)、俯角 41°*10
自動視準可能距離*11	
360°プリズム ATP1/ATP1S	: 2 ~ 600m * 3、14
プリズム5型	: 1.3 ~ 500m
プリズム2型	$1.3 \sim 1,000 \text{m}$
反射シート RS10/30/50	$5 \sim 50 \text{m} * 12$, 13
反射シート RS90	: 10 ~ 50m * 12, 13
自動視準完了時間*11	(視野内に自動視準させるプリズムがある場合、距離 100m
	時。反射シート(RS90N-K)がある場合、距離 50m
	時)
	4~8秒*15

自動視準精度(標準偏差)*11

プリズム

:1.2mm 相当角以内(~100m 未満)、

(0.3+9ppm × D) mm 相当角以内(100m 以上)

発光ダイオード(LED)(赤 626nm /緑 524nm)

USB フラッシュメモリー(8Gbyte まで使用可)

1.3~150m (気象条件:通常時*1) 上下左右±4° (7m/100m)

500MB(プログラム領域を含む)

- 反射シート RS90N-K
- :2mm 相当角以内* 12、13
- *10. 仰角 90°付近では傾斜角補正不可で測定時間が長くなります。
- * ¹¹:測定気象条件は、もやがなく視程が約 20km 以上、うすぐもり(30,000lx 以下)で かげろうがない
- *12:反射シートを用いた自動視準では、距離に応じ適正なサイズ(10~90mm)を使 用する必要があります。近距離測定では小さいサイズの反射シートをお使いくださ い。
- *13:自動視準光の入射角が反射シートに対して上下左右15°以内の値です。
- * 14:自動視準光の入射角が 360°プリズムに対して仰角・俯角 15°以内で正対時の値 です。
- *15.サーチ範囲を広く設定していて、望遠鏡の視準方向とターゲットが離れている場合 には、自動視準完了時間が長くなることがあります。

モーター駆動部

方式	DC モーターによる駆動
駆動範囲	360° (水平方向/鉛直方向)
最高回転速度	70° /秒(20 ℃)
	(参考) 180° 指定角旋回所要時間:約8秒(傾斜補正
	なし、20 ℃)
微動	ジョグ操作(最小送り約1″)

4' (0.12m/100m) 3段階(明るい/普通/暗い)

ガイドライト

光源
視認可能距離
視野範囲
中心エリア視認幅
明るさ

内部メモリー

メモリー容量

対応外部メモリー

通信部

データ入出力	非同期シリアル、	RS232C 規格準拠	
USB	USB2.0、ホスト	(Type A)、クライアント(Type m	ini B)

Bluetooth 無線技術

进信力式	
変調方式	
周波数	
対応プロファイル	
送信出力	
通信距離	
認証機能	

FHSS GFSK 2.402 ~ 2.48GHz SPP、DUN クラス 1 300m *** 15、16** なし/あり(選択可)

- *15:通信間付近一帯に障害物がなく、電波発信・妨害する施設や車がほとんどない場合、 雨天を除く
- *16:接続する Bluetooth 機器の仕様によっては、通信距離が短くなることがあります。

電源部

標準バッテリー BDC70 リチウムイオン雷池 連続使用時間(20℃) (自動視準機能を使い精密単回測定で 30 秒ごとに正と反で測定時) BDC70 :約5時間 BT-73Q/73QA(外部バッテリー:特別付属品) :約14.5時間 雷源監視機能(残量) 4段階 操作停止から(5分/10分/15分/30分)後に自動 電源自動 OFF 機能 的に OFF / なし(選択可) $6.7 \sim 12V$ 外部電源入力 バッテリー (BDC70) : 7.2V 公称電圧 容量 : 5.240mAh 寸法 : 40(W) × 70 (D) × 40(H)mm 質量 :約197g 充電器(CDC68/68A) 入力電圧 : AC100 ~ 240V 充電時間(25℃、バッテリー1つあたり) BDC70 :約 5.5 時間(低温/高温時には、記載の時間以上かかる ことがあります) 充電温度範囲 $0 \sim 40 \,^{\circ}\text{C}$ 保存温度範囲 -20~65°C 94(W) × 102(D) × 36 (H)mm 寸法 質量 約 170g

諸般

OS 表示部 バックライト タッチパネル キーボード トリガーキー 気泡管感度 円形気泡管 電子気泡管 求心望遠鏡 像 視野 倍率 最短合焦距離 レーザー求心(オプション機能) 光源 波長 / 射出出力 ビーム精度 スポット径 輝度調整機能 自動 OFF 機能 カレンダークロック機能 レーザー照準機能 使用温度範囲 保存温度範囲 防塵・防水性能 機械高 本体寸法

本体質量

Widnows Embedded CE 6.0 35型 QVGA 透過 TFT カラー液晶 IFD 照明、0~8段階調整可+自動 抵抗感圧式アナログタイプ 全26キー キー照明あり あり (側板部) :10′/2mm :6′/内円上(グラフィック) :±6′30″ (デジタル) :正像 :4° :3倍 :0.3m(底板より) :レーザーダイオード クラス2(JISC6802:2014) :635nm/0.99mW 以下 :1.0mm 以下(三脚脚頭高さ1.3m) : Ø3mm 以下 :5段階 :あり(5分) あり ON / OFF (選択可) -20~50°C(結露しないこと) -30~60°C(結露しないこと) IP65 (JIS C 0920 : 2003) 整準台取り付け面より 196mm 207 (W) × 190 (D) × 372 (H) mm (整準台 TR-101 使用時、突起物含まず) 6.1ka (BDC70と整準台を含む)

26. 解説

26.1 360°プリズムを使った高精度な視準方法

360°プリズム (ATP1) をお使いの場合、より高精度に視準を行うためには、360°プリズムを本機に向かって正対させて測定をしてください。360°プリズムの六角形の頂点の対角線上を結ぶ線上が、水平方向の正対位置です。

360°スライドプリズム(ATP1S)の場合は、プリズム上面の6本の印を直線に結ぶ線上が、水平方向の正対位置です。

26.2 正反視準による高度目盛のリセット

本機の高度目盛の0インデックスはほとんど狂いませんが、特に高い精度で角度測定をしたい場合には、以下の手順で0インデックスの狂いを消去することができます。

4

・ 電源を OFF にすると、高度目盛のリセットは無効になります。もう一度やり直してくだ さい。

▶手順

 観測条件の「Vマニュアル」の設定を変更 する 設定モードで「観測条件」を選択し、「Vマ ニュアル」を「Yes」に設定します。 ごず「19.1 観測条件」

< V マニュアル 0 セット > が表示されます。

- 2. 注意深く機械本体を整準する
- 3. 水平方向に約30mほどの距離にある明瞭 な目標物を望遠鏡「正」で正確に視準する 目標物を視準して【OK】を押します。 「反データセット」が表示され、鉛直角には 「V2」が表示されます。
- 望遠鏡を「反」の位置にし、同じ目標を正確に視準する
 視準後【OK】を押します。
 鉛直角に角度が表示されます。

以上で高度目盛のリセットは終了です。

V7ニュ アル Oセット			×
反データヤット			477
			0
			۲
			1
鉛直角		V 2	.
水平角	193	'30'56"	_1
		OK	

26.3 両差補正について

本機は、斜距離データを水平距離、比高に換算するとき、気差・球差(両方あわせて両差と呼ぶ)を自動的に補正しています。

● 両差補正を考慮した距離の計算式

水平距離、比高換算は次の式によります。

水平距離 D=AC(α) 比高 Z=BC(α) D =L{cos α - (2 θ - γ)sin α } Z =L{sin α +(θ - γ)cos α }

θ=L·cosα/2R: 球差補正項
γ=K・Lcosα/2R: 気差補正項
K =0.142 または 0.2: 大気の屈折係数
R =6371km: 地球の半径
α: 鉛直角(水平からの角度)
L:斜距離

両差補正を停止または、大気の屈折係数 K の値を変更したいときは、「19.1 観測条件」 を参照して設定してください。

27. 文字入力表

入力モードの数字入力以外が選択されているときは、1つのキーに複数の文字が割り当てられており、キーを押す回数によって表示される文字が切り替わります。 **□** 文字入力モードの変更:「5.1 基本のキー操作」

▶ 本機の文字入力表

キー	かな(カタカナ表示の例)	英文字 (大文字の例)	数字
(7)	アイウエオァィゥェォ	ABC	7
(8)	カキクケコ	DEF	8
(9)	サシスセソ	GHI	9
(4)	タチツテトッ	JKL	4
(5)	ナニヌネノ	MNO	5
(6)	ハヒフヘホ	PQR	6
(1)	マミムメモ	STU	1
(2)	ヤユヨヤュョ	VWX	2
(3)	ラリルレロ	Y Z !	3
(0)	ワヲン	/_&	0
(•)	% о	*?\$	•
(+/-)	-	# % @	- +
28. 索引

в	Bluetoothアドレス	
Е	FDM 絞り	121
v		
v	V モード(鉛直角表示方法)	
い		
	イニシャライズ処理 色設定	
Ż.		
	鉛直ジョグ	
お		
	オートパワーオフ	
	オートパワーオフ(電源 ON コマンド)	
か		
	ガイドライト	
き		101
	キーフイト	
	低低高マーク	
	距離分解能(最小距離表示)	
け		
	傾斜角補正	
z		
-	後方交会の計算の手順	
	後方交会を行う上での注意	
	コリメーション補正	
し		
	視差をなくす	
	自動 引用 日期 代本時の 	
	日勤优华(日勤优华相反)	
	約曲頃	
す		
-	水平角の設定方法	
	水平距離	
	水平ジョグ	
せ		
	接続モード	
	旋回(旋回精度)	
τ		~7
	正述派回 電源 OFF にできないとき	б/ лл
	电小 Vii に く こ ゆ い し こ	

と		
	投影補正	118
	トリガーキー	12
1+		
19	バックライトオフ	121
	バックライトの明るさ変更とレチクル照明・キーライトの ON/OFF 設定	120
71		
0.	ロイト時間	120
	ロツと时间	130
ふ		
	プリズム定数補正値	123
		
0	日視による高精度なターゲット視準	63
		00
n		
	レーザー照準オフ	121
	レーザー照準機能	11
	レジューム機能	42

機器の修理・サービスのお問い合わせまたは、 機器に関するご質問・ご相談は下記の販売店へ

販売店名

トプコンホームページ <u>http://www.topcon.co.jp</u>

株式会社 トフ・コン本社 〒174-8580 東京都板橋区蓮沼町75-1

株式会社トフ・コンソキアポジショニングジャパシ

本社 〒174-8580 東京都板橋区蓮沼町75-1

※ 当社連絡先詳細は、添付の「アドレスカード」または当社ホームページをご覧ください。

© 2013 TOPCON CORPORATION ALL RIGHTS RESERVED 無断複製及び転載を禁ず